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Abstract

Optimal Control for Electrically Propelled Aircraft
and Urban Air Mobility Network

Mengyuan Wang

Chair of the Supervisory Committee:
Professor Mehran Mesbahi

William E. Boeing Department of Aeronautics & Astronautics

This dissertation aims to address fundamental challenges in the field of Urban Air Mobility (UAM)

through optimal control strategies. Three key aspects are studied to enhance the performance of

UAM. First, a trajectory optimization algorithm for All-Electric Aircraft (AEA) is proposed, along

with the corresponding Simulink models, to minimize the operating cost of AEA. The impact of

battery dynamics on optimal trajectories is explored by integrating several battery models with

distinct fidelity into the corresponding optimal control problems. Second, an energy management

system is designed for Hybrid-Electric Aircraft (HEA) to optimize fuel consumption. Numerical

results for two HEA models indicate the limited fuel-saving achieved by using the engine to charge

the battery during flight. This observation leads to the investigation of two parallel hybrid electric

configurations, aiming to answer the question of whether it is worthwhile to charge the battery during

flight at all. A finite-dimensional optimization problem is formulated, and numerical results indicate

that increasing onboard battery capacity is more fuel-efficient than in-flight charging. Finally, two

important topics related to the UAM are investigated: optimal vertiport selection problem and

task assignment and vehicle routing problem. For the vertiport selection problem, a mixed-integer

programming approach is developed and applied to a hybrid ground-air network to improve the

traffic performance. As for the task assignment problem, a centralized approach is adopted to assign

a sequence of tasks to each vehicle, maximizing the overall profit. The problem is transformed into

an identification of multiple paths in a task network and is solved using a greedy algorithm.



DEDICATION

To my dearest husband Yiren Shen and our beloved little pi.

i



TABLE OF CONTENTS

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Statement of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline of dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2: Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Aircraft models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Eviation Alice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 SOUL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Conceptual HEA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Flight dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Battery dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Optimal control methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 The minimum principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Singular optimal control problem . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3: Trajectory optimization for All-Electric Aircraft . . . . . . . . . . . . . . . . . 20
3.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Battery dynamics and Simplified flight dynamics . . . . . . . . . . . . . . . . 24
3.2.3 Optimal control problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Optimal necessary conditions analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Constant altitude cruise phase . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Accelerated climb phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

i



3.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Constant altitude cruise phase with the ideal battery model . . . . . . . . . . 32
3.4.2 Constant altitude cruise phase with ECM . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Accelerated climb phase with ideal battery model . . . . . . . . . . . . . . . . 39
3.4.4 A complete flight phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Simulink model with different battery blocks . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 4: Power allocation and structures study for Hybrid-Electric Aircraft . . . . . . . 51
4.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Power allocation algorithm for HEA . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Power relation in the propulsion system . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 States dynamics and operating modes analysis . . . . . . . . . . . . . . . . . 58
4.2.3 Fuel minimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Comparison of two parallel hybrid electric configurations . . . . . . . . . . . . . . . . 72
4.3.1 Parallel hybrid electric architectures . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Power allocation problem transformation . . . . . . . . . . . . . . . . . . . . . 74
4.3.3 Comparison of two parallel configurations . . . . . . . . . . . . . . . . . . . . 80

Chapter 5: Vertiport selection and task assignment for UAM . . . . . . . . . . . . . . . . 88
5.1 Related works for vertiport selection and traffic equilibria . . . . . . . . . . . . . . . 89

5.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.2 Hybrid ground-air transportation networks formulation . . . . . . . . . . . . . 90
5.1.3 Traffic equilibria with node and link capacities . . . . . . . . . . . . . . . . . 95

5.2 Groud-Air hybrid transportation network design . . . . . . . . . . . . . . . . . . . . 97
5.2.1 Mixed-integer linear programming . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Related works for task assignment problem . . . . . . . . . . . . . . . . . . . . . . . 106
5.4 Task assignment and vehicle routing for UAM . . . . . . . . . . . . . . . . . . . . . . 108

5.4.1 Task network formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4.2 Mixed integer programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.3 Greedy algorithm and sub-modular proof . . . . . . . . . . . . . . . . . . . . 116
5.4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Chapter 6: Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

ii



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Appendix A: HEA optimization problem transformation . . . . . . . . . . . . . . . . . . . . 140
A.1 Transformation to a finite-dimensional optimization problem . . . . . . . . . . . . . . 140
A.2 Verification of the second-order sufficient condition and sensitivity analysis . . . . . . 142

Appendix B: Vertiport selection proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
B.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
B.2 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.3 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

iii



LIST OF FIGURES

Figure Number Page

1.1 Research topics explored in this dissertation. . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Eviation Alice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Ultralight aircraft SONG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Fuel consumption characteristics of the engine: (a) SFC vs output power; (b) fuel

flow rate vs output power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Open circuit potential of a single battery cell. . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Single Particle Model illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 The numerical results of states with ideal battery model. . . . . . . . . . . . . . . . . 33
3.2 The numerical results of control input and corresponding drag force with ideal battery

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 The numerical results of optimal states with ECM. . . . . . . . . . . . . . . . . . . . 35
3.4 The numerical results of optimal control input and corresponding drag force with ECM. 36
3.5 The numerical results of battery states with ECM. . . . . . . . . . . . . . . . . . . . 37
3.6 The impact of initial velocity on the total cost and terminal time. . . . . . . . . . . . 37
3.7 Climb phase; (a)Horizontal distance profile; (b)Velocity (only magnitude) profile. . . 39
3.8 Climb phase; (a) Altitude profile; (b) Flight path angle profile. . . . . . . . . . . . . 40
3.9 Climb phase; (a) SOC of the battery pack profile; (b) The current passing through

the battery pack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.10 Climb phase; (a) Thrust force profile; (b) Lift coefficient profile. . . . . . . . . . . . . 41
3.11 Climb phase with an extra constraint; (a) Thrust force profile; (b) Current profile. . 42
3.12 A complete flight phase; (a) Horizontal distance; (b) Velocity (magnitude). . . . . . . 45
3.13 A complete flight phase; (a) Altitude; (b) Flight path angle. . . . . . . . . . . . . . . 46
3.14 A complete flight phase; (a) State of charge; (b) Current. . . . . . . . . . . . . . . . 46
3.15 A complete flight phase; (a) Thrust; (b) Lift coefficient. . . . . . . . . . . . . . . . . 47
3.16 AEA Simulink Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.17 Comparisons of voltage and cell current for distinct battery models. . . . . . . . . . . 50

4.1 Fuel consumption rate at different output power. . . . . . . . . . . . . . . . . . . . . 58

iv



4.2 Case 1–control input and states: (a) the throttle of the engine, (b) the total mass,
(c) the SOC of the battery pack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Case 1–power allocation and fuel consumption rate: (a) engine output power, (b)
battery output power, (c) the corresponding fuel rate (kg/h) under control. . . . . . 65

4.4 Case 1 (Not charging the battery pack during flight)–control input and states: (a)
the throttle of the engine, (b) the total mass, (c) the SOC of the battery pack. . . . 66

4.5 Case 1 (Not charging the battery pack during flight)–power allocation and fuel con-
sumption rate: (a) engine output power, (b) battery output power, (c) the corre-
sponding fuel rate (kg/h) under control. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 The time history profiles of control input for the first three cases. . . . . . . . . . . . 67
4.7 The time history profiles of SOC for the first three cases. . . . . . . . . . . . . . . . . 67
4.8 The time history profiles of fuel rate for the first three cases. . . . . . . . . . . . . . . 68
4.9 The time history profiles for case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.10 The time history profiles for case 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.11 Climb phase control input and states: (a) the throttle of the engine, (b) the total

mass, (c) the SOC of the battery pack. . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.12 Climb phase power allocation and fuel consumption rate: (a) engine output power,

(b) battery output power, (c) the corresponding fuel rate (kg/h) under control. . . . 70
4.13 Connected parallel hybrid architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.14 Independent parallel hybrid architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.15 (a) Remaining charge in the battery pack; (b) Total mass of the aircraft. . . . . . . . 79
4.16 (a) Control input; (b) Approximate Specific Fuel Consumption. . . . . . . . . . . . . 80
4.17 (a) Remaining charge in the battery pack; (b) Approximate Specific Fuel Consumption. 81
4.18 HEA Simulink model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.19 Turbine engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.20 Simulink generated time history for the fuel consumption. . . . . . . . . . . . . . . . 84
4.21 Fuel consumption with different battery configurations; cases 1 and 2 are connected

configurations; cases 3 and 4 are independent configurations. . . . . . . . . . . . . . . 86

5.1 An example of a hybrid ground-air transportation network . . . . . . . . . . . . . . . 93
5.2 The Anaheim network where the candidate vertiport locations are marked with col-

ored circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 The optimal air and ground traffic network loading when vertiport selection budget

γ = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4 Vertiport network example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5 Task network example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.6 Vehicle route for the feasible task path 1→ 3→ 5→ 6→ 7 in Fig. 5.5. . . . . . . . . 112

v



5.7 Geographic network with 8 vertiport . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.8 Paths obtained from greedy algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

vi



LIST OF TABLES

Table Number Page

2.1 Eviation Alice technical data, including estimated parameters. . . . . . . . . . . . . . 9
2.2 SOUL technical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Conceptual HEA technical data, including estimated parameters. . . . . . . . . . . . 11
2.4 Technical data of an existing NMC cell. . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Technical data of a high energy NMC cell. . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Comparison of the total cost (Ah) and terminal time (minutes) with Kaptsov and
Rodrigues’s (K/R) results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Comparison of total cost and time between two battery models. . . . . . . . . . . . . 36
3.3 Comparison of cost and time between different battery configurations . . . . . . . . . 38
3.4 Comparison of total costs with three distinct battery models. . . . . . . . . . . . . . 49

4.1 Fuel consumption of the climb phase with different battery pack configurations. . . . 84

5.1 Logical constraints for vertiport locations marked in Fig. 5.2 . . . . . . . . . . . . . . 105
5.2 Path assignment results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

vii



Nomenclature

Abbreviations

AAM = Advanced Air Mobility

AEA = All-Electric Aircraft

DOC = direct operating cost

DP = dynamic programming

ECM = empirical circuit model

ESPPRC = elementary shortest path problem with resource constraints

EU = European Union

eVTOL = electric Vertical Takeoff and Landing

FAA = Federal Aviation Administration

HEA = Hybrid-Electric Aircraft

HEP = Hybrid Electric Propulsion

HEVs = Hybrid Electric Vehicles

ICE = internal combustion engine

MILP = mixed integer linear program

NASA = National Aeronautics and Space Administration

ODE = ordinary differential equations

OP = orienteering problem

RAM = Regional Air Mobility

SFC = specific fuel consumption

SOC = state of charge

viii



SPM = single particle model

TOPTW = team orienteering problem with time window

TSP = traveling salesman problem

UAM = Urban Air Mobility

ix



ACKNOWLEDGMENTS

I cannot think of a better way to start the acknowledgments than by sincerely thanking my mom,

Mianmian Wang, and my dad, Jun Wang. The pillars you have positioned beneath my journey with

your dedication, sacrifice, and unwavering support are immeasurable. Mom, your nurturing embrace

and boundless devotion have shaped me in ways that are difficult to articulate. Your steadfast belief

in my potential sustained me through hard times. Dad, your teachings of integrity and goodwill

have been a constant source of motivation. Your wisdom has propelled me forward and guided me

through challenges. Expressing the depth of my gratitude is a task that words seem inadequate

to fulfill. My love for both of you knows no bounds, and I am truly thankful for all that you’ve

bestowed upon me.

I have to also thank my maternal grandmother, Shuiqin Wang, the most lovely and kind person

I have ever known. Your diligence, courage, and genuine nature have been a beacon, inspiring me

to be a better person. Your life’s wisdom, a veritable treasure trove, has enriched my journey. I

hope that I have been able to bring a sense of pride to your heart.

To my dearest aunt, Li Wang, thank you for being my faithful friend, for always placing me in

top priority, and for encouraging me to pursue my dream when others do not comprehend. Your

ambition, self-discipline, and perseverance have inspired me to reach for higher horizons. My uncle,

Guojian Li, your patience and generosity have left an indelible mark on my heart. Your presence

and support have been a source of strength.

I have to express my gratitude to a few exceptional teachers who have played significant roles

throughout my educational journey. Thank you, Ting Wang, for your candid praise that never

minced words and for instilling in me boundless courage and confidence during moments of timidity

and sensitivity. To my master advisor, Professor Long Zhao, your role in my life extends beyond

being an excellent mentor; you are also a treasured friend. Throughout the course of over three

years during my master’s journey, you have offered me profound guidance and encouragement.

x



What has truly enhanced my learning experience is your commitment to science and your expansive

philosophical perspective on life. The impact of your subtle influence over these three years has

solidified my determination to pursue a path in research. To Professor Changyun Zhang, it is a

great honor to have you as my co-advisor. To Nan Gao, I want to express my heartfelt appreciation

for being an incredible mentor not only for my master’s thesis but also for the various challenges

life has presented. Your intelligence always amazes me, and your patience and guidance played a

pivotal role in the success of my master’s journey. Moreover, your presence in my life goes beyond

that of a mentor – you’ve become a big brother to me.

I consider myself incredibly fortunate to have been blessed with numerous cherished friends

throughout my life. They celebrate with me during times of joy and provide unwavering support

when I need it the most. To my dearest and most loyal friend, Wenqing Huai, for caring and looking

out for me despite the great distance across the oceans and for always being straightforward with me,

offering both praise and constructive criticism whenever needed. I hold the great honor of being your

son, Yi Yang’s godmother, and having you in my life fills me with immense gratitude. To Xiaoxuan

Wang, as I’ve often mentioned, the reason why I pursue my PhD journey in Seattle lies with you.

We have stood by each other through significant life moments, traversing the paths of high school,

college, marriage, and more. You are my beacon of warmth and strength in this cold and rainy city.

Your passion for life and your persistent determination have provided me with an enduring source

of motivation. To Xiangnan Feng, thank you for being my best friend with whom I can discuss

anything and for being my invaluable unpaid personal mathematics tutor. Your companionship

and support have been unwavering, especially in our shared journey as PhD candidates, where we

navigate challenges and endure together. To Shiyao Lin, thank you for helping and supporting me in

my first year of PhD. Your kindness warmed me a lot during those challenging times. Your presence

made a significant difference, and I am truly thankful for your assistance. To Zhuo Feng and Ziwei

Liu, our shared overseas experiences have warmed my heart deeply. To Ruiqi Liao, thank you for

being my best hiking buddy and a loyal friend with whom I can share anything. To Mengyin Wang,

thank you for being an amazing roommate and loyal friend to me.

To Suryanarayana Kolluri and Krishna Shah, I have benefited tremendously from working with

xi



both of you. I count it a privilege that I got to collaborate with you on my first PhD project.

The wealth of knowledge I’ve acquired from the two of you has paved the way for my subsequent

academic pursuits, encompassing not only a strong foundational understanding but also a dedication

to research practices.

To Dan Calderone, thank you for being such an exceptional mentor and collaborator to me.

Your guidance and support provided me with my first teaching opportunity, which in turn paved

the way for me to become an independent instructor for graduate students. Your insights into linear

algebra have genuinely opened up a new world to me. I truly wish that every beginner in the field

of control could have the privilege of learning from you.

To Yue Yu, it has been a great pleasure to work with you on our cutting-edge project. Your

extensive and profound grasp of mathematical knowledge has left an indelible impression on me,

serving as a constant source of inspiration. Moreover, I’ve gained valuable insights beyond the scope

of our project, observing your rigorous approach, dedication to refining expression, and commitment

to effective presentation. Your example has driven me towards becoming a more accomplished and

dedicated researcher.

To Shahriar Talebi, someone with whom I’m fortunate to be in the same lab. Your exceptional

passion and kindness as a fellow PhD student have left an indelible mark on me. Your enthusiasm

towards both research and life always astounded me. As I navigate my own PhD journey, your

remarkable example serves as a constant inspiration, propelling me forward with determination and

purpose.

To Niyousha Rahimi, our shared experiences resonate so deeply that it feels as though I’ve

encountered a soulmate. My only regret is that we didn’t have the chance to exchange our joys

and sorrows sooner. To Kuang-Ying (Eddie) Ting, your presence as a good friend has been so

remarkable that I’ll deeply miss our casual conversations and small talk. To Spencer Kraisler, your

curiosity and self-discipline never cease to inspire me. To Aditya Deole, the breadth and depth of

your knowledge and interest always amaze me. I would also like to express my heartfelt gratitude to

Beniamino Pozzan, Josh Holder, Qishi (Jackson) Zhou, Siavash Alemzadeh, Dillon Foight, Soumya

Vasisht, Mathias Hudoba de Badyn, Taylor Reynolds, Bijan Barzgaran, Jingjing Bu, Henk van

xii



Waarde for their warm presence, enlightening discussions, and unique qualities that have made this

journey unforgettable.

To Camron Call, Raju Mattikalli, and Kamiar Karimi, it is such a privilege for me to collaborate

with you. Your immense knowledge and practical experiences provide tremendous insights into my

research.

To Lillian Ratliff, I feel so lucky that my first job at UW was to work for you. Your patience

and approachability made my first job experience seamless and efficient. Having you as a part of

my committee is a true honor. To Kristi Morgansen, thank you for trusting me to teach a graduate

course. Your organized lecture notes contributed to a smooth teaching process. As a female scientist

and a strong presence in a male-dominated field, you will always be my role model. To Venkat R.

Subramanian, my gratitude goes out to you for your mentorship and assistance during our Boeing

project. Your guidance has been invaluable.

To Mehran Mesbahi, the best advisor a PhD student can ask for. You are a perfect combination

of a rigorous scientist and an artist with boundless creativity. Collaborating on research with you has

been an incredibly enriching experience. Not only do you offer sound and foundational suggestions,

but you also ignite my imagination with cutting-edge and audacious ideas. A friend of mine, who is

leading a startup focused on electric aircraft, once inquired about how I chose this groundbreaking

new field for my PhD topic. I shared that it all began when I came across a paper you shared

five years ago – that marked the beginning of my PhD journey. Furthermore, you are such a wise

and funny person. Your empathetic understanding and warm support during my toughest days are

greatly appreciated. I genuinely count myself lucky to be your student and aspire to be a lifelong

friend.

To my beloved husband, Yiren Shen, thank you for being my bedrock throughout my degree.

Building a life in a foreign land is extremely challenging, let alone when one of the family members is

on her way to getting a PhD degree. We have overcome so many obstacles and difficulties. I simply

couldn’t have achieved this without you by my side. Your unending love and belief in me, even in

the face of my flaws, have been my constant anchor. From you, I have learned how to communicate

efficiently with those closest to me, how to deal with my depression and anxiety, and how to be

xiii



a better person. Your intelligence and self-discipline stand as a shining model that inspires me to

strive for excellence. Planning our future together is my enduring source of motivation. Thank

you for being my source of encouragement, my pillar of support, and the heart that has made this

journey truly worthwhile. So no matter how many times, I still wanna say: I love you, dear. Let

this be my last word.

Mengyuan Wang, August 30, 2023.

xiv



1

Chapter 1

INTRODUCTION

At first glance, electric aircraft may appear futuristic, although the concept dates back to the

late nineteenth century. The first electrically powered airship was developed in 1883. The first

manned electric aircraft, designed by Fred Militky, piloted by Heino Brditschka, and powered by

Nickel-cadmium batteries, flew for nine minutes on October 21, 1973 [1]. Electrically propelled

aircraft are powered by electricity, which can be stored in batteries or fuel cells. This dissertation

focuses on electric aircraft powered by batteries.

All-Electric Aircraft (AEA) have numerous advantages over conventional fuel-burning aircraft.

The electric motor is significantly more efficient than the conventional gas engine, enabling electric

aircraft to produce the same amount of power while consuming much less energy. Moreover, the

electric motor generates less noise, allowing for more flexible routing of electric aircraft, whereas

conventional aircraft are generally more constrained in terms of both routes and schedules due to

noise restrictions in urban areas. Additionally, the absence of bulky fuel tanks and engines allows

for more flexible aerodynamic designs, thereby improving flight performance.

Furthermore, the electric aircraft have fewer moving parts, and the electric motor has a lower

operating temperature and more predictable wear and tear patterns than the gas engine, resulting

in fewer maintenance costs and a safer system. In addition, an all-electric system is able to power

auxiliary equipment directly without the need for mechanical or hydraulic transfer systems. This

mechanism simplifies the entire system significantly and enhances safety. If we ignore the production

procedure of batteries, all-electric aircraft are also considered to be emission-free. Given rising

concerns about climate change and sustainability, AEA has the potential to provide a mode of flight

that is more efficient, flexible, and environmentally friendly. Developing optimal trajectories for

AEA is one of this dissertation’s primary contributions.

Despite the significant potential of AEA, there are several drawbacks that demand consideration.

Due to the current relatively low battery energy density, AEA has limited range and a heavy weight.
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Moreover, the lengthy charging time imposes additional operational restrictions. In addition, infras-

tructure, regulations, and public acceptance are enormous hindrances to the development of AEA as

a viable alternative to conventional aircraft. To overcome these obstacles, designing Hybrid-Electric

Aircraft (HEA) has become a viable approach to clean aviation in the coming decades, particularly

for longer air travel.

HEA offer several advantages over conventional aircraft, including improved fuel efficiency, re-

duced emissions, and less noise pollution. In conventional aircraft, all flight phases with varying

power requirements are powered by gas engines, resulting in inefficiency since the engines cannot be

optimized for each phase. Most commercially available HEA are modified from conventional aircraft

by reducing the original gas engines and adding electric paths. By doing so, the electric motors

and the engines can drive the aircraft together during the climb phase, and the engine is designed

optimally for the cruise phase, which is the most significant phase in fuel consumption. The use

of smaller engines also reduces weight, resulting in further fuel efficiency gains. Compared with

AEA, HEA offers longer ranges and fewer infrastructure requirements, making it a viable bridge

between conventional aircraft and future commercial AEA. The second direction of this disserta-

tion’s contribution is to study power allocation algorithms for HEA and parallel hybrid electric

configurations.

The development of electrically propelled aircraft is facilitating a broader transformation in avi-

ation, including the emergence of Advanced Air Mobility (AAM) - which aims to develop an aerial

transportation system capable of providing efficient, safe, and environmentally friendly transporta-

tion in urban and suburban areas using cutting-edge technologies, such as electrically propelled

aircraft, automated air transportation management, advanced infrastructure, etc. AAM seeks to

deliver a new level of mobility that decreases traffic congestion, travel time, and pollution while

enhancing accessibility and safety. AAM is a broader concept that includes Urban Air Mobility

(UAM), which transports passengers and cargo within a city, and Regional Air Mobility (RAM)

that focuses on intraregional flights [2]. Among numerous research topics about UAM, this disser-

tation focuses on optimal vertiport selection and task assignment with time-dependent constraints.
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Figure 1.1: Research topics explored in this dissertation.

1.1 Statement of contributions

Fig. 1.1 presents a comprehensive overview of this dissertation’s contributions, which are divided

into two main layers: the link level and the network level. At the link level, our primary objective is

to improve the performance of individual aerial vehicles by designing optimal trajectories for AEA,

developing power allocation algorithms, and investigating different configurations for HEA. At the

network level, we focus on vertiports selection and task assignment for AAM with optimization

strategies.

The research on AEA trajectory optimization begins with the investigation of a single phase

(the cruise phase) with different battery dynamical models [3]. The operating cost minimization

problem is formulated as an optimal control problem. This optimal control problem leads to a

singular control structure when the thrust is taken as the control input. The Pontryagin’s minimum

principle is applied to identify the necessary conditions for optimality, and the theoretical analysis is

subsequently verified through numerical results obtained from a commercial solver. This algorithm

is then extended to the climb and descent phases [4], leading to a comprehensive examination

of trajectory optimization algorithms for AEA. Further analyses are conducted to explore control

input profiles with different battery models. The DOC minimization for AEA over a complete

integrated flight profile is also examined. A multi-phase optimization problem is formulated and
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solved as a single optimal control problem, avoiding introducing discontinuities due to separate

optimal control problems for different phases. Finally, a Simulink model is developed to explore the

battery performances with battery models with distinct fidelity, and comparisons between optimized

flight profiles with three distinct battery models are provided.

In regard to HEA research, we pursue two directions in this dissertation. The first direction

focuses on developing the power allocation algorithm when flight profiles are given in advance [5].

An optimal control problem for a small HEA is formulated and solved to distribute power in the

propulsion system. Similar to the trajectory optimization approach used for AEA, the minimum

principle is applied to identify the necessary conditions for optimality. Numerical analyses reveal

that the engine should be operated in its efficient region while utilizing the battery capacity to

achieve fuel minimization. However, the fuel savings from this optimal strategy are found to be

limited. This algorithm is then applied to a larger conceptual HEA; however, the fuel savings

remain minimal, leading to the second direction we have conducted for HEA: whether charging the

battery during flight is fuel efficient.

Two parallel hybrid electric architectures are compared in terms of fuel consumption [6]. The

connected architecture has a mechanical connection between the engine and the electric motor,

allowing in-flight battery charging for improved engine fuel efficiency. The independent architec-

ture does not have a mechanical connection, enabling easy transitions from conventional to hybrid

aircraft and from hybrid aircraft to all-electric aircraft. A finite-dimension optimization problem

is formulated and applied to a 19-seat conceptual aircraft to compare the fuel usage of these two

architectures. The numerical results indicate that in-flight battery charging provides negligible fuel

savings for the proposed aircraft model. Increasing onboard battery capacity is more fuel-efficient

than in-flight charging. The connected architecture’s complexities, challenges in transitioning to

all-electric aircraft, and potential battery degradation in harsh flight environments make the inde-

pendent architecture a more practical choice.

Regarding UAM, we address the vertiport selection problem by introducing a mathematical

model to determine the optimal vertiport location and capacity, aiming to minimize traffic congestion

within the hybrid ground-air transportation network [7]. Our model is equivalent to a mixed-integer

linear program and is illustrated using the Anaheim transportation network.

In this dissertation, task assignment and vehicle routing problems for UAM are solved jointly.
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By constructing a task network based on a sequential timing of tasks, we assign a set of tasks with a

sequence to a vehicle. The task assignment problem is transformed into identifying multiple paths in

a network that maximize the overall profit. By solving the task assignment problem in a centralized

way, we are able to answer a number of fundamental questions for UAM.

1.2 Outline of dissertation

This dissertation is organized as follows. Chapter 2 provides background information that serves

as a common reference for subsequent chapters. We introduce several aircraft models, battery

models, and system dynamics; we also give formal statements of the tools from optimal control

theory that will form the theoretical foundation for algorithms developed in this dissertation.

Chapter 3 discusses trajectory optimization algorithms for AEA. Several optimal control prob-

lems are formulated for different flight phases with distinct battery models. The minimum principle

is applied to these optimal control problems to obtain the necessary conditions for optimality; nu-

merical results from a commercial optimization solver are provided. A Simulink model is developed

to verify the proposed algorithms.

In Chapter 4, a power allocation algorithm for a single-seat hybrid-electric aircraft is introduced,

accompanied by both theoretical and numerical analyses. Then two parallel hybrid electric propul-

sion structures–distinguished by the presence or absence of a mechanical connection between the

engines and the electric motors–are discussed and compared in terms of fuel consumption.

Chapter 5 first discusses the vertiport selection problem in §5.1 and §5.2; then the task assignment

and vehicle routing problem is presented in §5.4.

Chapter 6 provides concluding remarks and a glimpse into future research directions.
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Chapter 2

PRELIMINARIES

In recent years, aircraft electrification has been a thriving area, and hundreds of projects through-

out the world are developing electrically-propelled aircraft. Two existing aircraft models and one

conceptual model are examined in this dissertation. The state of the art of electrically propelled

aircraft is presented in §2.1, as well as technical data and assumptions for selected aircraft models.

The formulation of optimal control problems relies heavily on system dynamics. Nonlinear

longitudinal flight dynamics and several distinct battery dynamics are introduced in §2.2. The

algorithms developed in this dissertation depend heavily on optimal control theory (in particular,

the Pontryagin’s minimum principle). To make this dissertation more self-contained, a review of

optimal control theory is given in §2.3.

2.1 Aircraft models

There are a number of available configurations for AEA in the market. For example, E-fan 1.0

is a prototype two-seat AEA developed by Airbus [8]. The test flight for E-fan 1.0 was conducted

in April 2014; this aircraft was built for pilot training and crossed the English Channel in July

2015. Pipistrel ALPHA Electro is a light sport electric aircraft designed for training purposes for

flying schools. As such, flight performances for this aircraft are rather targeted, e.g., short take-off

distance, powerful 1000+ fpm climb, and endurance of one hour [9]. Taurus G4 is a 4-seat fully

electric aircraft designed by Pipistrel, which won the National Aeronautics and Space Administration

(NASA) Green Flight Challenge in 2009 [10], which was a competition for quiet, practical, green

aircraft. The most distinguishing feature of the Taurus G4 is that it is a twin-fuselage plane. Joby

Aviation’s S4 air taxi is a 5-seat eVTOL (electric vertical take-off and landing) with a 150-mile max

range. The full-scale demonstrator took to the skies in 2017; it received airworthiness approval

from the U.S. Air Force in 2020. Eviation Alice is a nine-passenger aircraft [11]; MagniX provides

the electric propulsion system for this aircraft. The Eviation Alice successfully completed its first
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flight on September 27, 2022; currently, Eviation aims to complete Federal Aviation Administration

(FAA) type certification and service entry in 2027. In this dissertation, Eviation Alice has been

chosen as our baseline aircraft model for developing energy-optimized flight profiles for AEA.

The most commonly used configurations for HEA are series, parallel, and series-parallel archi-

tecture. The Diamond DA-36 E-star is the first series HEA that accomplished its maiden flight in

2011 [12, 13]. This aircraft was developed by Siemens, EADS, and Diamond Aircraft. The Diamond

DA-36 E-star is powered by a Siemens 70 kW electric motor and a 30 kW internal combustion engine

(ICE). EcoEagle is a parallel HEA developed by Embry-Riddle Aeronautical University. It was built

for the Green Flight Challenge [10]. The original Pipistrel Panthera [14] is a lightweight, four-seat,

fuel-powered aircraft developed by Pipistrel. In 2013, the project received funds from the European

Union (EU) to develop series HEA. The Pipistrel Panthera mockup received a series hybrid electric

powertrain, ground testing a 200 kW motor driven by battery only, by a 100 kW generator (pow-

ered by fuel) only, and by both combined. Following this achievement, the EU continued to fund

Pipistrel to develop series HEA with a project named Mahepa. The flight test is planned for 2020.

E-fan X [15] is the series HEA demonstrator developed by Airbus, Siemens, and Rolls-Royce. One

of the original four turbofans is replaced by a Siemens 2 MW electric motor. Different from the

aforementioned lightweight HEA with ICEs, E-fan X is a mid-scale aircraft mounted with turbofan

engines and an electric motor; its maiden flight is planned for 2020.

2.1.1 Eviation Alice

Eviation Alice [16], shown in Fig. 2.1, is an all-electric, nine-passenger aircraft powered by two

electric motors; trajectory optimization for AEA with distinct battery models is studied based on

Eviation Alice in this dissertation. Table. 2.1 lists some of the key aircraft parameters; we note that

parameters with ∗ are only estimated for the purpose of subsequent analysis.

2.1.2 SOUL

In [17], Friedrich and Robertson modified an ultralight single-seat aircraft SONG with a 15kg

ICE, shown in Fig. 2.21. A tuned Honda GX160 with an estimated maximum output power of

1Figure of the aircraft SONG comes from https://www.songairplane.com/

https://www.songairplane.com/
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Figure 2.1: Eviation Alice.

7.5kW and a customized motor of 12 kW has been chosen as the new powertrain configuration. The

developed HEA is referred to as SOUL. Table.2.2 lists some of the key parameters of SOUL.

2.1.3 Conceptual HEA model

A conceptual HEA propulsion system model developed by Finger, et al. [18] is employed for

our subsequent analysis. Finger, et al. considered an existing 19-seat commuter aircraft as the

baseline and examined two approaches for the HEA preliminary design. The conventional aircraft

was re-sized to accommodate the hybrid electric propulsion technology. Key characteristics of one

of the configurations used in [18] are shown in Table 2.3. Note that parameters with ∗ are only

estimated values.

In [18], the authors did not specify the engine model, battery model, or electric motor model;

instead, the reference weight and some characteristics for these components were provided. In this

work, the following models are selected for the propulsion system–with some parameters slightly

different from those in [18]:
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Table 2.1: Eviation Alice technical data, including estimated parameters.

Parameters Values

Wing area∗ 18m2

Maximum take-off weight 6350 kg
Battery capacity∗ 2170 Ah
Battery pack nominal voltage∗ 360 V
Maximum speed 630 km/h
Total system efficiency∗ 0.8
Zero-lift drag coefficient∗ 0.024
Induced drag coefficient∗ 0.039

Table 2.2: SOUL technical data.

Parameters Values
Wingspan 11.2m
Length 5.6m
Height 1.9m
Airfoil UAG 88-143/20
Propulsion Hybrid
Wing area 10.3m
Airframe weight 78kg
Empty weight 103kg
MTOW 235kg
Fuel tank 25 l
Cruise speed 80-110km/h
Maximum speed 143km/h

1. Turboprop engine: the PT6A-135A engine by Pratt & Whitney is selected; the weight of

this engine is 153 kg; its maximum output power is 560 kW; and its average specific fuel

consumption (SFC) is 356 g/kW/h. In this work, it is assumed that the engine runs at a fixed

rotational speed; the SFC and the fuel flow rate can be represented as functions of the output

power of the engine, shown in Fig. 2.3.

2. Electric motor: the Magni250 by MagniX is selected; it weighs 72 kg; its maximum output

power is 280 kW; the total efficiency is assumed as 95%.
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Figure 2.2: Ultralight aircraft SONG.
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Figure 2.3: Fuel consumption characteristics of the engine: (a) SFC vs output power; (b) fuel flow
rate vs output power.
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Table 2.3: Conceptual HEA technical data, including estimated parameters.

Parameters Values

Wing area 32 m2

Maximum take-off weight 6385 kg
Cruise altitude 3000m
Battery capacity∗ 400 Ah
Battery pack nominal voltage∗ 540 V
Propeller efficiency∗ 0.7
Zero-lift drag coefficient∗ 0.024
Induced drag coefficient∗ 0.056

3. Battery cells: in [18], the authors assumed a futuristic value for the energy density of battery

cells that was significantly greater than the current level of battery technology. In this work,

an existing battery model from the Korean battery manufacturer Kokam is utilized. The

technical data for this battery is listed in Table. ??. For the battery pack configuration, it is

Table 2.4: Technical data of an existing NMC cell.

Model Capacity Weight Energy
Density

SLPB140460330 200 Ah 3.96 kg 189 Wh/kg

assumed that all battery cells operate identically and that the parallel and series connections

of the battery pack do not affect the output voltage and the state of charge of each cell. In

addition, it is assumed that the battery cell has no internal state dynamics, resulting in a

constant output voltage of 3.6 V. For this conceptual aircraft, it is assumed that the battery

pack has two parallel paths and 150 cells connected in series in each path. This configuration

has an output voltage of 540 V and a total capacity of 400 Ah. The battery pack weighs

600 kg, which is greater than the value in [18]. Other battery pack configurations are also

examined in Section 4.3.
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2.2 Dynamics

The system dynamics is expressed as ordinary differential equations (ODE); these ODEs play a

crucial role when formulating optimal control problems. In this dissertation, flight dynamics and

battery dynamics are considered to design energy management algorithms for electrically propelled

aircraft.

2.2.1 Flight dynamics

The full flight dynamics of an aircraft is rather involved. In this dissertation, we only focus on

the longer period (Phugoid) mode in the longitudinal direction, and the nonlinear dynamics is given

by,

ẏ = v cos γ, (2.1a)

ḣ = v sin γ, (2.1b)

v̇ =
1

m
(T cosα−D −W sin γ), (2.1c)

γ̇ =
1

mv
(T sinα+ L−W cos γ), (2.1d)

where y is the horizontal position; v is the velocity of the aircraft; γ is the flight path angle; h is the

flight altitude; m is the total mass of the aircraft; T is the thrust force, which is the control input

in this paper; D is the drag force; W is the total weight of the aircraft; L is the lift force, and α is

the angle of attack. The lift and drag forces are computed by

L =
1

2
ρSCLv

2, (2.2a)

D =
1

2
ρSCDv

2, (2.2b)

where ρ is the air density; S is the wing area; CL is the lift coefficient, and CD is the drag coefficient,

given by

CD = CD,0 +KC2
L, (2.3)
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where CD,0 is called zero-lift drag coefficient, and K is called the induced drag coefficient. These

two coefficients vary with the aircraft model and are usually provided by the manufacturer.

2.2.2 Battery dynamics

Three models with distinct fidelity for Lithium-ion batteries are examined to be incorporated

into the operation of AEA. The first is the “ideal” model with a constant voltage; the second one

is the so-called empirical circuit model (ECM) [19], in which the voltage is a nonlinear function

of the state of charge (SOC) of the battery pack; the third is the single particle model (SPM), a

physics-based model consisting of a set of partial differential equations and differential algebraic

equations [20]. In the sequel, it is assumed that all battery cells in the battery pack operate in an

identical manner, and the parallel and series configurations for the battery pack have a negligible

effect on the voltage and the SOC of each cell.

Ideal battery model

In this model, it is assumed that the output voltage of the battery cell is constant. That is,

the voltage does not depend on the SOC, ambient temperature, or the current passing through the

battery. In addition, it is assumed that the internal resistance of the battery is zero. This battery

model can be expressed as,

Ucell = Unom,
dθcell
dt

= −Icell(t)
Qcell

, (2.4)

where Unom is the nominal battery cell voltage, often provided by the manufacturer; θcell is the

SOC of the battery cell; Icell is the current passing through the battery cell; Qcell is the total charge

of the battery cell. For Eviation Alice, we assume that the nominal voltage of the battery cell is

3.6V. The voltage and capacity of the battery pack are related as,

U = Ucell ∗ nseries, Q = Qcell ∗ nparallel. (2.5)

Note that the above relations hold for all battery models. For Eviation Alice, it is assumed that

the battery pack has 31 parallel paths and 100 cells connected in series in each path; hence, the

nominal voltage of the battery pack is 360V. The cell capacity is 70Ah (see in Table.2.5); hence the
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capacity of the battery pack is 2170Ah. The impact of the battery configuration (different voltages)

on AEA’s performance will be examined in the sequel.

Empirical Circuit Model (ECM)

ECM is usually obtained by fitting the experimental open circuit potential data into a high-order

polynomial; it provides the relation between the voltage and the SOC of the battery. This model is

defined by,

dθcell
dt

= −Icell(t)
Qcell

(2.6a)

Uoc,cell(θcell) =
8∑

k=0

akθ
k
cell (2.6b)

Ucell = Uoc,cell(θ)−Rcell Icell(t), (2.6c)

where Uoc,cell is the open circuit potential of the battery cell, which is a function of the SOC;

ak(k = 0, · · · , 8) are the coefficients of the polynomial for Uoc, and Rcell is the internal resistance

of the battery cell.
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The battery weight for Eviation Alice is 3600 kg, with battery cells provided by a Korean

company, Kokam. The energy density of the battery cell that Kokam offered to Eviation is ap-

proximately 260 Wh/kg. This battery cell is customized for Eviation, and its technical data is not

publicly available. In this dissertation, we adopt a similar battery specification. The technical data

of the battery cells considered are given in Table 2.5.2

Table 2.5: Technical data of a high energy NMC cell.

Model Capacity Internal
Resistance Weight Energy

Density
SLPB120216216G2 70Ah 0.7mΩ 1.15 kg 225Wh/kg

Fig. 2.4 is obtained from simulation experiments when discharge rate = 0.5C. Note that after

discharging for 100 minutes or when the state of charge is below 0.1, the voltage drops rapidly.

Single Particle Model (SPM)

Fig. 2.5 is the overall schematic of the simulation process of the SPM. The current density iapp

is given as an input to the battery model for the specific time period or until the battery reaches

the specified cut-off voltages. The lithium-ion cell can be charged/discharged multiple times based

on the rocking chair concept. Fig. 3.1(b) depicts the single sandwich computational domain of the

physics-based battery model. The model consists of (i) positive electrode (cathode), (ii) separator

and (iii) negative electrode (anode). The entire cell is filled with electrolyte. When an external

load is applied, the electrolyte helps lithium-ion to migrate from one region to another through a

separator (a thin membrane), preventing direct contact between the electrodes. Simultaneously, the

electrons are transferred through the current collectors and the external circuit. The current collec-

tors are on both positive and negative ends. Typically, aluminum is used as a current collector for

the positive electrode and copper for the negative electrode. When the battery is charging, Li+ ions

de-intercalate from the positive electrode and intercalate into the negative electrode. Conversely,

Li+ ions intercalate into the positive electrode through the electrolyte during discharging. Dur-

ing charge/discharge, Li+ ions go back and forth between the negative electrode and the positive

2https://kokam.com/cell
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electrode, enabling the conversion of energy between chemical energy and electrical energy and the

storage of electrochemical energy within the battery. Fig. 3.1(c) is the schematic depicting the op-

Figure 2.5: Single Particle Model illustration.

eration of SPM. The individual electrode is volume-averaged across the thickness and is assumed to

be represented by a single particle of the active material. The electrolyte dynamics will be ignored

in this work in order to reduce model complexity and increase computational efficiency for real-time

simulations.

2.3 Optimal control methods

Pontryagin’s Minimum Principle is a classical method used to derive the necessary conditions

for the global optimal solution. In some literature, it is referred to as the maximum principle, and it

was developed by Pontryagin and his students during the 1960s. The proof and further discussions
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can be found in the original work of Pontryagin [21], one of the best resources on this subject. In

this section, we briefly introduce the theorem in §2.3.1; and one of the special cases in optimal

control problems: the singular optimal control problem in §2.3.2.

2.3.1 The minimum principle

Consider a dynamical system [22] of the form,

ẋ(t) = f(t,x(t),u(t)), x(t0) = x0, t ∈ [t0, tf ], (2.7)

where x : R→ X ⊂ Rn is the state with n dimensions; u : R→ U ⊂ Rm is the control ; both x and

u are function time; t0, tf ∈ R+ are the initial and final time, respectively. The X ,U represent the

sets of admissible state and control, respectively. The function f : R × Rn × Rm → Rn is referred

to as the dynamics of the system. The following assumptions hold.

Assumption 1. The function u is piecewise continuous with respect to time; the set U is compact.

Assumption 2. The function f is continuous in t and u and C1 in x; the Jacobian ∇xf ∈ Rx×Rx

exists and is continuous in t and u.

We want to minimize the following cost functional,

J(u) =

∫ tf

t0

L(t,x(t),u(t))dt+K(tf ,xf ), (2.8)

where L : R×Rn×Rm → R is the running cost; K : R×Rn → R is the terminal cost; xf is the final

(terminal) states, which is a free parameter in most cases in this dissertation. The optimal control

problem is formulated as

min
u,tf

J(u) (2.9a)

s.t. ẋ(t) = f(t,x(t),u(t)), (2.9b)

x(t0) = x0, t ∈ [t0, tf ], (2.9c)

x ∈ X , u ∈ U . (2.9d)
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The minimum principle provides the necessary optimality conditions for Problem (2.9). First,

we define the Hamiltonian function for this problem as,

H(t,x(t),u(t),λ(t)) = L(t,x(t),u(t)) + λ(t)f(t,x(t),u(t)), (2.10)

where λ(t) : R→ Rn represents the so-called co-states.

Let u∗ : [t0, t
∗
f ]→ U be an optimal control and let x∗ : [t0, t

∗
f ]→ Rn be the corresponding optimal

states trajectory. Then the minimum principle asserts that there exists a function λ∗ : [t0, tf ]→ Rn

having the following properties [22]:

1. x∗ and λ∗ satisfy the canonical equations

ẋ∗ = Hλ(t,x
∗,u∗,λ∗), (2.11a)

λ̇
∗
= −Hx(t,x

∗,u∗,λ∗), (2.11b)

where Hλ denotes the partial derivative of H with respect to λ; Hx denotes the partial

derivative of H with respect to x; we note that both ẋ and λ̇ are time derivatives of the

corresponding variables with respect to time t.

2. The Hamiltonian must be minimized over the set of all admissible controls

H[t,x∗(t),u∗(t),λ∗(t)] ≤ H[t,x∗(t),u(t),λ∗(t)]. (2.12)

3. For the free-end time problem, H[t,x∗(t),u∗(t),λ∗(t)] = 0 for all t ∈ [t0, tf ]; when the terminal

time is fixed, the Hamiltonian is a constant.

The minimum principle provides necessary conditions for global optimality; these conditions,

in conjunction with specific initial and final conditions, characterize the solution to the underlying

optimal control problem.
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2.3.2 Singular optimal control problem

In some applications, the Hamiltonian is a linear function of the control input (here and hence-

forth, we only consider the situation when the control input is a bounded scalar variable) and can

be expressed as

H(t,x(t),u(t),λ(t)) = H̄(t,x(t),λ(t)) + S(t,x(t),λ(t))u. (2.13)

According to the minimum principle, the optimal control minimizes the Hamiltonian; hence, the

following structure for the optimal control input is obtained,

u∗(t) =

{umax S < 0

umin S > 0

? S = 0

(2.14)

That is, on some time intervals, we allow S = 0, and the Hamiltonian is independent of the

control input. The optimal control on this interval is called “singular”, and the corresponding

segment for the optimal states trajectory is referred to as a singular arc.

Let us denote the control on the singular interval as us. In order to determine the value of us,

it is usually sufficient to solve the following set of equations:

H = 0; S = 0; Ṡ = 0, (2.15)

where H = 0 is given by the minimum principle; S = 0 and Ṡ = 0 are specified by the assumption

that on some interval S = 0 for all t on that interval.
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Chapter 3

TRAJECTORY OPTIMIZATION FOR ALL-ELECTRIC AIRCRAFT

Trajectory optimization involves designing a trajectory for a vehicle that optimizes a certain

performance while satisfying a set of constraints. This is usually accomplished by solving an open-

loop optimal control problem with constraints, enabling the determination of the optimal trajectory

offline. Efficient and optimized trajectory planning plays a crucial role in enhancing the performance

and efficiency of aircraft operations. Subsequently, the navigation system guides the aircraft to follow

the designated trajectory.

The objective function of optimal control problems for aircraft trajectory optimization varies

depending on the specific application. In the case of conventional aircraft, fuel consumption min-

imization often serves as the objective function due to its direct impact on operating costs and

environmental sustainability. Trajectory optimization algorithms also consider the impact of vari-

ous factors, such as altitude, speed profiles, and flight routes, on the total performance.

Similarly, for AEA, battery charge minimization can serve as a potential objective function since

the battery pack is the sole power resource for the aircraft. Trajectory optimization directly affects

range capabilities, which is a main challenge for AEA due to their very limited storage capacities

resulting from current battery technologies. Kaptsov and Rodrigues [23, 24] defined the direct

operating cost (DOC) for an AEA as a combination of time-related cost and battery charge cost.

Both flight dynamics and fuel consumption rates are crucial constraints in the formulation of

the optimal control problem in trajectory optimization for a conventional aircraft. In the case of

AEA, battery dynamics replaces fuel consumption rates and plays a significant role in the aircraft’s

operation. The electrical energy of the battery is generated by an electrochemical reaction between

two metals of different affinities, which is highly sensitive to operating and environmental conditions.

Accurately modeling battery dynamics can often be challenging.

Furthermore, the battery management system is essential for ensuring a safe and efficient flight.

It must guarantee an effective and accurate estimation of the battery’s state of charge, operating
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conditions, and thermal management. On the other hand, the flight profile also affects the battery’s

operating conditions, thereby further affecting the battery’s lifespan. For example, a fast flight speed

may require high current draws from the battery pack, leading to high temperatures. Overheating

will degrade battery performance and shorten its life. Conversely, extremely low temperatures,

typical operating conditions for aircraft, can reduce the battery’s efficiency and available power.

In summary, it is necessary to integrate battery dynamics and flight dynamics when formulating

and solving the energy management problem for AEA. This integration allows for a comprehensive

understanding of the complex relationship between battery performance, flight operations, and

energy management strategies. Three battery models with distinct fidelity are introduced in §2.2.

The ideal battery model and the empirical circuit model are integrated with flight dynamics to

formulate the optimal control problem in this chapter; the single particle model is too complicated

to be incorporated into the optimal control problem; hence, it is only examined in the Simulink

environment.

This chapter is organized as follows. First, a comprehensive literature review on aircraft energy-

efficient operation is provided in §3.1. Then, we introduce key elements for formulating optimal

control problems as well as several example problems for different flight phases in §3.2. The optimal

necessary conditions are discussed in §3.3. Numerical results and analyses are provided in §3.4. In

§3.5, we present the Simulink environment and the validations of proposed algorithms.

3.1 Related works

Aircraft energy-efficient operation can generally be approached as an optimal control problem,

where the goal is to find the best trajectory that optimizes specific objective functions. An excellent

survey of numerical methods for trajectory optimization was written by Betts [25], and several

more recent articles also surveyed this field [26, 27, 28]. Betts [25] classified the techniques into

indirect and direct methods. Indirect methods involve explicitly solving the optimality conditions

derived via the calculus of variations, whereas direct methods do not require an analytic expression

for the necessary conditions. In contrast, direct methods transform the optimal control problem

into a nonlinear programming problem [29, 30, 31, 32] that can be effectively solved by a variety

of well-developed algorithms. In this dissertation, the focus is on the indirect method, wherein the

minimum principle is applied to the energy management problem for AEA.
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Both Pargett et al. [33] and Franco et al. [34], for example, presented analyses of the singular

optimal flight control problems and how to address them using the minimum principle. These

works then utilized the results from optimality conditions to optimize energy consumption and derive

optimal trajectories for the cruise phase for the Boeing 747-400 and Boeing 767-300ER, respectively.

Villarroel et al. [35] defined the to-be-minimized cost index in detail and combined the minimum

principle and the Hamilton-Jacobi-Bellman equation to obtain a sub-optimal solution for the true

airspeed of the cruise phase in a state feedback form. Rivas et al. [36] considered the influence of

air compressibility on the drag force and applied the indirect method to solve a range maximization

problem. Cots et al. [37] studied the aircraft minimum time-to-climb problem with the singular

perturbation method. Diaz-Mercado et al. [38] developed a nominal trajectory from the analyses of

the necessary for optimality, then implemented a feedforward-feedback control scheme to make the

aircraft robust under uncertainty and disturbances. Bonami et al.[39] formulated aircraft trajectory

optimization as a mixed-integer nonlinear programming and solved it using Gauss-Lobatto direct

collocation method. The aircraft is required to follow a route of waypoints, which are determined

by integer variables.

For an AEA, the total charge drawn from the battery pack is typically of prime importance in

energy management. Analogous to a conventional aircraft, one could construct and solve optimal

control problems centered around battery utilization in order to design the energy management

system for an AEA. Kaptsov and Rodrigues initiated formalizing the characterization of optimal

speed for an electric aircraft via optimal control [24]. The objective function, in this case, was

chosen to minimize the so-called Direct Operating Cost (DOC), which includes the time-related

cost and the cost of depleting the battery charge. By applying PMP, the authors then obtained

an analytical expression for the optimal cruise speed. In their subsequent work [23], Kaptsov and

Rodrigues considered the internal resistance of the battery pack and obtained a different curve from

the one presented in [24]. Barufaldi et al. [40] conducted research on optimal energy consumption

for climb phases. The climb phase is quite energy-consuming and demanding on the propulsion

system. As such, it becomes crucial to study algorithms that improve climb energy performance.

Barufaldi analyzed the steady climb mode by formulating an energy minimization problem that can

be solved by a parameter optimization method. This study also examined the linearized accelerated

climb optimal control problem and applied the PMP for its solution. Falck et al. [41] characterizes
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optimal trajectories for the NASA X57, which is a distributed electric testbed aircraft, using a

Legendre-Gauss-Lobatto collocation control approach. This work also takes the thermal constraints

into consideration in designing the optimal trajectory. Settele et al. [42] analyzed the impact of

the Peukert effect on optimal control of AEA. Peukert’s law indicates the approximate change in

battery capacity at different discharge rates. They compared the optimal trajectory with different

battery models, one with and one without considering the Perkert effect, and studied the impact of

Perkert effect on the range of AEA. Paek et al. [43, 44] considered Li-ion battery degradation and

studied the impact of several degradation scenarios on the long-term performance of AEA.

3.2 Problem formulation

An optimal control problem consists of a mathematical model of the system being controlled

- represented by a set of ODEs, an objective function that describes the desired behavior of the

system, and a set of constraints - for both control inputs and states that the system must satisfy.

This section introduces these crucial elements for formulating control problems and presents several

representative optimal control problems for the trajectory optimization of AEA investigated in this

dissertation.

3.2.1 Objective functions

In [35], the DOC of the cruise phase for a conventional aircraft is defined as

Cfuel =
∫ tf

t0

(Ct + Cff)dt,

where Ct represents time-related costs, which contain hourly maintenance costs, flight crew salaries,

and leasing costs; Cf represents the cost of fuel; f is the aircraft’s fuel flow rate, usually in pounds

per second; t0 is the initial time, and tf is the final time. The trade-off between Ct and Cf is

reflected by a cost index CI, computed as

CIfuel =
Ct

Cf
,
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a large CIfuel corresponds to a strong weight on the cost of travel time compared to the amount of

fuel consumed. Following this definition, [23] provides the corresponding DOC for an AEA, given

as

C =

∫ tf

t0

(Ct + CqI)dt, (3.1)

where Cq represents the cost of the battery charge, and the unit of Cq is U.S. dollars per Coulomb.

Similarly, there is a trade-off effect between the time-related cost and the battery charge cost,

represented by the cost index CI,

CI =
Ct

Cq
, (3.2)

where a large CI corresponds to a strong weight on the cost of travel time compared to the amount

of the battery charge consumed. On the other hand, the consumed energy cost is usually more

significant than the time-related cost for the climb phase since the flight time is short and the power

consumed is large; as such, CI should be a very small value for the climb phase; when CI = 0, we

have an energy minimization problem. The objective function of DOC minimization now becomes

J∗ = min

∫ tf

t0

(CI + I)dt, (3.3)

where CI varies for different flight phases.

The other objective function considered in this dissertation is to maximize the cruise range,

represented by

J = max −y(tf ), (3.4)

where y is the horizontal distance.

3.2.2 Battery dynamics and Simplified flight dynamics

When formulating the optimal control problem, the SOC of the battery pack (θ) is a crucial

consideration, and its dynamic is given as

θ̇ = − I
Q
, (3.5)



25

where θ is the SOC of the battery pack; I is the current passing through the battery pack; Q is the

battery pack’s total charge. This equation holds for all battery models discussed in §2.2.

This dissertation considers distinct flight phases and provides the corresponding simplified flight

dynamics to each phase.

Constant altitude cruise phase

For the constant altitude cruise phase, the following two assumptions are made:

Assumption 3. During the cruise phase, the aircraft flies from one point to another at a constant

altitude, the flight path angle γ = 0 during flight, which leads to γ̇ = 0 and ḣ = 0.

Assumption 4. The value of the angle of attack is constant and small, resulting in the following

approximations cosα ≈ 1 and sinα ≈ 0.

With these two assumptions, the dynamic model simplifies to

ẏ = v, (3.6a)

v̇ =
1

m
(T −D), (3.6b)

L =W, (3.6c)

where y is the horizontal position; v is the velocity; m is the total mass of the aircraft, which is a

constant value for AEA; T is the thrust force; D is the drag force; L is the lift force; W is the total

weight of the aircraft. The drag force and lift force are computed by Eq.(2.2).

The total weight of an AEA is a constant value; hence, during the constant altitude cruise phase,

the lift force is also a constant value, which leads to a constant lift coefficient CL.

Accelerated climb phase

The accelerated climb phase is assumed to follow Assumption 4. Additionally, during the climb

phase, the lift coefficient is considered as a control input. The dynamics for the climb phase is given
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by the following equations,

ẏ = v cos γ, (3.7a)

ḣ = v sin γ, (3.7b)

v̇ =
T −D −W sin γ

m
, (3.7c)

γ̇ =
L−W cos γ

mv
, (3.7d)

where γ is the flight path angle; h is the altitude. In this dissertation, we also assume that the

descent phase follows the same dynamics as the climb phase.

3.2.3 Optimal control problems

We present the optimal control problem for the cruise phase and the climb phase, respectively.

Constant altitude cruise with the ideal battery model

Before we formulate the control problem, we need to connect the flight dynamics and the battery

dynamics through the power relation in the propulsion system. For the aircraft flying at speed v,

the required net power Preq is

Preq = Tv = ηPbat, (3.8)

where η is the total system efficiency, assumed to be a constant value in this dissertation; Pbat is

the output power of the battery pack, and it can be computed as,

Pbat = −UQ̇ = UI, (3.9)

where U is the voltage of the battery pack, and it is a constant value in the ideal battery model;

combining Eq.(3.8) and Eq.(3.9), we obtain the following relation,

I =
Tv

ηU
. (3.10)
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The thrust force magnitude is constrained by

Tmin ≤ T ≤ Tmax, (3.11)

where 0 ≤ Tmin ≤ Tmax defines the permissible range for the thrust force, usually provided by the

aircraft manufacturer. The boundary conditions in this scenario enforce a given horizontal position

at both initial and final times, but the final time is not fixed:

y(0) = 0, y(tf ) = yd. (3.12)

Given the objective function, dynamics, constraints, and boundary conditions, the DOC mini-

mization problem with the ideal battery model is then stated as,

Problem 1. Find the piecewise continuous control function T (t) and final time tf ∈ R that solves

the following problem:

J∗ =min
T,tf

∫ tf

0
(CI +

Tv

ηU
) dt (3.13a)

s.t. ẏ = v, (3.13b)

v̇ =
T −D
m

, (3.13c)

Tmin ≤ T ≤ Tmax, (3.13d)

0 ≤ v(t) ≤ vmax, y(0) = 0, y(tf ) = yd. (3.13e)

If the constant battery pack voltage U is replaced with Eq.(2.6), we obtain the DOC minimization

problem with the ECM, and θ is added as one of the states.

Problem 2. Find the piecewise continuous control function T (t) and final time tf ∈ R that solves
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the following problem:

J∗ =min
T,tf

∫ tf

0
(CI +

Tv

ηU
) dt (3.14a)

s.t. ẏ = v, (3.14b)

v̇ =
T −D
m

, (3.14c)

θ̇ = − I
Q
, (3.14d)

0 ≤ v(t) ≤ vmax, θmin ≤ θ(t) ≤ θmax, (3.14e)

y(0) = 0, y(tf ) = xd, (3.14f)

where the current passing through the battery pack can be expressed as I =
U−
√

U2−4RPbat

2R , and R is

the internal resistance of the battery pack.

Accelerated climb with the ideal battery model

In the case of the accelerated climb phase, the power relation remains consistent with that of the

constant altitude cruise phase. The objective function continues to be the minimization of the DOC.

When CI = 0, we have the energy minimization problem. During the climb phase, in addition to

the thrust force, we introduce the lift coefficient as the second control input to balance the lift force

and the weight.

In addition to Eq.(3.11), the other constraint for the control input is given by

CLmin ≤ CL ≤ CLmax , (3.15)

where 0 ≤ CLmin ≤ CLmax defines the permissible reage for the lift coefficient, usually estimated

by flight conditions. The boundary conditions, in this case, are given initial and final altitude. The

final time continues to be unknown:

h(0) = hi, h(tf ) = hd. (3.16)

With the provided elements, the DOC minimization problem for the accelerated climb phase is then
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stated as,

Problem 3. Find the piecewise continuous control functions T (t) and CL(t) and final time tf ∈ R

that solves the following problem:

J∗ = min
T,CL,tf

∫ tf

t0

(CI + I) dt (3.17a)

s.t. ẋ = f(t,x,u), (3.17b)

x ∈ X , (3.17c)

u ∈ U , (3.17d)

with state x = [y h v γ θ]⊤ and control u = [T CL]
⊤; f is given by Eq.(3.5) and Eqs.(3.7); X and

U designate state and control constraint sets, respectively.

3.3 Optimal necessary conditions analyses

We have formulated several optimal control problems for DOC minimization; the next step

involves analyzing the optimal necessary conditions for these problems using the minimum principle.

3.3.1 Constant altitude cruise phase

The Hamiltonian function of Problem 1 is given as,

H(t,x(t),u(t),λ(t)) = CI +
Tv

ηU
+ λyv + λv(

T −D
m

), (3.18)

where λy and λv are the co-states corresponding to y and v, respectively, and their dynamics with

respect to time are given by the minimum principle as,

λ̇y(t) = −
∂H

∂y
= 0, (3.19)

λ̇v(t) = −
∂H

∂v
= −[ T

ηU
+ λy −

λv
m
Dv], (3.20)
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where Dv is the partial derivative of the drag force D with respect to the velocity v, which can be

computed by the following equation,

Dv = ρSCDv = ρS(CD,0 +KC2
L)v = ρSCD,0v +

4KW 2

ρSv3
. (3.21)

This Hamiltonian function can be rewritten as,

H = (CI + λyv − λv
D

m
) + (

v

ηU
+
λv
m

)T = H̄ + ST.

Obviously, the Hamiltonian is a linear function of the control input T , and the thrust force is

bounded by the maximum value that the propulsion system can provide and a minimum value to

maintain the lift force. As such, we obtain a singular optimal control problem as described in §2.3.1.

According to the singular optimal control problem analyses in §2.3.1, Problem 1 has the following

control structure,

T ∗ =

{ Tmax S < 0,

Ts S = 0,

Tmin S > 0.

(3.22)

By substituting Eq.(3.22) into Eqs.(2.15), the following equations are obtained,

H̄ = CI + λyv − λv
D

m
= 0, (3.23a)

S =
v

ηU
+
λv
m

= 0, (3.23b)

Ṡ = − D

mηU
− λy
m

+
λv
m2

Dv = 0. (3.23c)

From Eqs.(3.23), we can deduce that the velocity v on the singular arc satisfies the following equation

Dv · v2 = CI · η · U. (3.24)

The optimal velocity on the singular arc is determined by the cost index, the total efficiency of

the propulsion system, and the voltage of the battery pack. In the case of the constant altitude

cruise phase, all the elements on the right-hand side of the equation are constant. Therefore, we can
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conclude that the velocity on this singular arc should remain constant. Consequently, the thrust

force should be equal to the drag force, leading to the determination of the optimal control Ts on

the singular arc.

3.3.2 Accelerated climb phase

The Hamiltonian function of Problem 3 is given as the form,

H(t,x(t),u(t),λ(t)) = CI + I + λy · ẏ + λh · ḣ+ λv · v̇ + λγ · γ̇ + λθ · θ̇, (3.25)

where λy, λh, λv, λγ , and λθ are the co-states corresponding to state x = [y h v γ θ]⊤, respectively;

and their dynamics are given as,

λ̇y(t) = −
∂H

∂y
, λ̇h(t) = −

∂H

∂h
, λ̇v(t) = −

∂H

∂v
,

λ̇γ(t) = −
∂H

∂γ
, λ̇θ(t) = −

∂H

∂θ
. (3.26)

We now substitute the dynamics of the states in the problem Eqs. (3.17) into the Hamiltonian

Eq. (3.25), which, after rearrangement, assumes the form,

H = CI + λyv cos γ + λhv sin γ −
1

2m
λvρSv

2CD,0 − λvg sin γ −
1

v
λγg cos γ

+ (
v

ηU
+
λv
m
− λθv

QηU
)T − 1

2m
λvρSv

2KC2
L +

1

2mv
λγρSv

2CL, (3.27)

the Hamiltonian is a linear function of the thrust force T and a quadratic function of the lift

coefficient CL. Furthermore, these two control inputs are independent of each other; hence the

optimal control law for T follows the structure in Eq. (2.14). The optimal control law for CL is

derived by taking the first-order derivative of H with respect to CL. Thereby,

− λvKvCL +
1

2
λγ = 0, (3.28)

is the necessary optimality condition for CL.
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3.4 Numerical results

This section presents the numerical results obtained from a commercial solver Tomlab [45] for

optimal control problems formulated in §3.2. Tomlab contains an optimal control problem solver;

this solver guarantees that the output solution satisfies the minimum principle (necessary conditions

for optimality). The aims are to verify the theoretical necessary conditions and to provide further

analyses for different flight conditions.

3.4.1 Constant altitude cruise phase with the ideal battery model

We first examine the optimal trajectory with the ideal battery model for the constant altitude

cruise phase. The aircraft model chosen for our investigation is the Eviation Alice, and the optimal

control problem is given in Problem 1. The nominal voltage of the battery pack is assumed to be a

constant value of 360V. The constraints for states and control input are estimated as

0 ≤ y ≤ 800km, (3.29a)

70m/s ≤ v ≤ 175m/s, (3.29b)

3kN ≤ T ≤ 7.5kN, (3.29c)

0 ≤ CL ≤ 1.17. (3.29d)

The following flight conditions are considered: h = 3 km, y(0) = 0, y(tf ) = 200 km. The initial

mass is set to equal the maximum take-off mass of Eviation Alice, which is 6350 kg. Numerical

results obtained from Tomlab are presented in Fig. 3.1 and Fig. 3.2. In this case, the initial velocity

is not specified, and the optimal solution indicates that the initial velocity should be set as the

maximum value. From Fig. 3.2a, it can be observed that the optimal control structure exhibits

a min-singular-min structure with two switches, and the junction points are located around 5.5

minutes and 29 minutes.

The optimal necessary condition for the velocity on the singular arc is Eq.(3.24): Dv · v2 =

CI · η ·U ; in this numerical case, CI = 50, the efficiency of the propulsion system is set as η = 0.7.
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Figure 3.1: The numerical results of states with ideal battery model.

Combining Eq.(3.24) and Eq.(3.21), we obtain the following relation,

ρSCD,0v
3 +

4KW 2

ρSv
= CIηU, (3.30)

by substituting all parameters and numerical results, the velocity obtained from Tomlab satisfies

Eq.(3.30).

Comparison with Kaptsov and Rodrigues’s results

In Kaptsov’s work [24], the focus was on optimal control for an electric aircraft under the

assumption of constant altitude and constant velocity, and of that, the battery model did not have

any dynamics. However, this constant velocity assumption limited the ability to introduce additional

states to the system, making it challenging to consider battery dynamics and other perturbations in

line with previous works in the literature. In this paper, we have adopted a different control input

while retaining the same objective function. Consequently, we can observe variations in the total

cost and terminal time, as shown in Table 3.1, when compared to Kaptsov’s results.
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Figure 3.2: The numerical results of control input and corresponding drag force with ideal battery
model.

Table 3.1: Comparison of the total cost (Ah) and terminal time (minutes) with Kaptsov and Ro-
drigues’s (K/R) results.

Cost index value 50 100 150 200 250 300
Total cost with K/R 762.45 790.13 817.55 844.73 871.66 898.37

Total cost in this paper 716.11 742.98 769.67 796.19 822.53 848.71
Final time with K/R 33.37 33.05 32.75 32.47 32.18 31.91

Final time in this paper 32.35 32.14 31.92 31.72 31.51 31.32

This table demonstrates an improvement of approximately 50 Ah in the total cost with the

method proposed in this paper, accompanied by a slightly shorter terminal time to conclude the

flight. As indicated in Fig. 3.1b, the optimal solution involves setting the initial speed to its maxi-

mum value. However, this may incur higher energy costs due to the acceleration required to reach

the maximum speed. By setting the initial velocity to v(t0) = 130 m/s, equivalent to Alice’s offcial

cruise speed, the total cost increases 814 Ah (CI = 200). Compared with the result in Table 3.1,

there is an improvement of approximately 30 Ah compared to Kaptsov’s result.

Taking the thrust force as control input not only improves the energy efficiency of the flight but

also facilitates means of incorporating the dynamics of the battery pack into the optimal control
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problem. This approach represents a more comprehensive and practical method for optimizing

electric aircraft flights.

3.4.2 Constant altitude cruise phase with ECM

Since Uoc,cell is an eighth-order polynomial of SOC, see Eq.(2.6b), making it difficult to obtain the

analytical solution for the problem Eqs.(2), we only provide the numerical results for this problem.

Fig. 3.3 to Fig. 3.5 present the numerical solution obtained from Tomlab. It is observed that the

optimal control structure shares similarities with the optimal control problem using the ideal battery

model. However, due to the utilization of different battery models, there are variations in junction

times, final times, and total costs. As a result, the numerical approach provides valuable insights

into the performance and behavior of the electric aircraft under consideration with the ECM battery

model. The flight and boundary conditions remain consistent with those described in §3.4.1. The
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Figure 3.3: The numerical results of optimal states with ECM.

comparison of total cost and terminal time is presented in Table 3.2.
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Figure 3.4: The numerical results of optimal control input and corresponding drag force with ECM.

Table 3.2: Comparison of total cost and time between two battery models.

Total cost (A · h) Terminal time (min)
Ideal battery model 742.98 32.14

ECM 708.96 32.40

The cost minimized in this section consists of two components: the total charge drawn from

the battery pack and the time-related cost. As different battery models produce varying output

voltages, the total costs obtained from the two battery models differ while the power required to fly

the aircraft remains the same. Since the ECM offers higher fidelity than the ideal battery model, it

can be inferred that the total cost estimate with ECM is more accurate and realistic.

By adopting thrust as the control input in the optimal control problem formulation, the trajec-

tory optimization procedure becomes adaptive, allowing the incorporation of various disturbances

into consideration. For example, this formulation can be applied to the complete flight profile

of an electric aircraft and accommodate uncertainties like wind and other meteorological factors.

The adaptive nature of this control approach enhances the aircraft’s ability to adapt to changing

conditions and disturbances, thereby improving its overall performance and robustness.
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Figure 3.5: The numerical results of battery states with ECM.

Impact of initial velocity

In the previous examples, the initial velocity is not specified. However, the initial velocity plays

a significant role in determining the optimal flight trajectory and, consequently, affects the total

cost and terminal time in the examples discussed. From Fig. 3.6, it is observed that a higher initial
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Figure 3.6: The impact of initial velocity on the total cost and terminal time.

velocity leads to less cost and a shorter duration for the cruise phase. As such, when we start

from the maximum value of the velocity, we could have the least incurred cost and flight time.
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However, when the initial velocity is set to the maximum value, it allows the aircraft to reach the

desired cruise speed faster, but this may come at the cost of higher energy consumption due to the

required acceleration. Ultimately, the selection of the initial velocity should be carefully considered

in conjunction with other parameters and objectives to achieve the most appropriate and optimal

flight plan for the given electric aircraft mission.

Impact of the battery pack configuration

The Eq.(3.24) indicates that the optimal velocity on the singular arc depends on the cost index,

total system efficiency, and the voltage of the battery pack. To further investigate, we will now

delve into the implications of different battery configurations on the overall cost.

In the previous numerical examples, the voltage of the battery pack was assumed to be 360V ,

and the configuration followed 31 parallel paths with 100 cells connected in series in each path

(referred to as case 2). Now we consider two additional cases with the same number of battery cells

in the pack:

1. case 1: This configuration consists of 39 parallel paths with 80 cells in each path (20 more

cells than the original configuration), resulting in a nominal voltage of 288V ;

2. case 3: This configuration consists of 25 parallel paths with 124 cells in each path; the nominal

voltage is 446.4V ;

We then solve the corresponding optimal control problem with ECM and compare the total cost

and the terminal time. The flight distance is set as 200km, the initial velocity as 130km/s, and the

cost index is set as 100; for the maximum range problem, the total mass we take is the maximum

take-off weight. The comparative results are given in Table 3.3:

Table 3.3: Comparison of cost and time between different battery configurations

case 1 case2 case 3
Total cost (Ah) 1025.58 826.92 675.30

Terminal time (min) 33.56 33.43 33.30
Maximum range (km) 335.43 335.23 336.38
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As the nominal voltage increases in the battery pack (as observed in case 3 with a voltage of

446.4V ), the total incurred cost for the flight reduces without compromising the maximum range.

This insight provides a clear direction for the desired configuration of the battery pack.

3.4.3 Accelerated climb phase with ideal battery model

For the accelerated climb phase of Eviation Alice, the nominal voltage of the battery pack is

assumed to be 360V. Constraints for control inputs and for the states y and v are the same as for

the cruise phase; for other states, they are given as,

0 ≤ h ≤ 3500m, −6 ≤ γ ≤ 6 deg, 0.1 ≤ θ ≤ 1. (3.31)

The initial values for the states are set as follows: y(t0) = 0, h(t0) = 0, v(t0) = 80m/s, γ(t0) =

0 deg, and θ(t0) = 1. The terminal condition for the altitude is specified as h(tf ) = 3km. Moreover,

no terminal conditions are set for the other states. The numerical results obtained from Tomlab for

the Problem 3 are presented in Fig. 3.7 to Fig. 3.10.
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Figure 3.7: Climb phase; (a)Horizontal distance profile; (b)Velocity (only magnitude) profile.
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Figure 3.8: Climb phase; (a) Altitude profile; (b) Flight path angle profile.
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Figure 3.10: Climb phase; (a) Thrust force profile; (b) Lift coefficient profile.

Fig. 3.10 indicates that during the climb phase, the optimal control solution involves adopting

maximum thrust force while allowing variations in the lift coefficient. The corresponding total cost

is 368Ah, and the terminal time is 555s. The co-states obtained from Tomlab satisfy the necessary

condition for optimality, as given in Eq.(3.28).

Fig. 3.7b and Fig. 3.9b depict a steep change in the velocity profile and the current profile during

the flight. Such abrupt variations may lead to passengers’ discomfort and have an adverse effect on

the battery pack. To mitigate this issue and prevent sudden fluctuations in the current profile, we

introduce one more constraint on the states, namely, −0.1 ≤ v̇ ≤ 0.1.

The corresponding velocity profile and current profile, subject to this constraint, are shown in

Fig. 3.11. After implementing this constraint, the total cost and the terminal time are 375Ah and

576s, respectively. The total cost exhibits only a slight change, while the climb interval extends

by 21s. This constraint proves to be effective in achieving a smoother velocity and current profile,

minimizing the discomfort experienced by passengers and reducing the adverse impact on the battery

pack.

We now replace the ideal battery model in Problem 3 with ECM to investigate the impact of

different battery models on the total cost and the terminal time. It is noteworthy that the states

and control inputs obtained with ECM are essentially the same as those obtained with the ideal



42

0 1 2 3 4 5 6 7 8 9 10 11

time(min)

78

80

82

84

86

88

90

92

94

v
e

lo
c
it
y
(m

/s
)

Velocity

(a)

0 1 2 3 4 5 6 7 8 9 10 11

time(min)

2050

2100

2150

2200

2250

2300

2350

2400

2450

i(
A

)

Current passing through the battery pack

(b)

Figure 3.11: Climb phase with an extra constraint; (a) Thrust force profile; (b) Current profile.

battery model. However, the total cost for the ECM case is 339Ah, which is lower than the cost

obtained from ideal battery model due to a higher voltage profile associated with ECM.

To verify the optimality of this algorithm, the fuel consumption for the climb phase with constant

velocity and constant flight path angle is computed. We sweep the velocity from 70 m/s to 90 m/s,

and γ from 0 to 6 deg to find the minimum cost; the results show that with v = 89 m/s and

γ = 3.4 deg, the total climb cost is 374 Ah, and the terminal time is 574 s. Compared to the

proposed algorithm, this constant climb has slightly more operating costs and longer flight time. In

addition, increasing the velocity to v = 89 m/s also requires additional time and battery charge.

Note that in order to maintain the constant velocity and flight path angle, the thrust force and the

lift coefficient are changing at all times. In the proposed algorithm, the thrust force and the lift

coefficient are constant for most of the flight.

3.4.4 A complete flight phase

In previous examples, we have solved the AEA energy management using the optimal control

formalism in order to minimize DOC during the climb and the cruise phases, respectively. Both

problems are free-end optimal control problems, meaning that the final time for the trajectory is not

specified. In addition, neither terminal conditions on the aircraft speed nor on the state of charge
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of the battery pack have been addressed.

In this section, a multi-phase energy management problem is formalized and then solved as

a single optimal control problem. Note that in each phase of the trajectory, objective functions

and dynamics may vary. As a result, the complete aircraft flight trajectory has characteristics of

a controlled switched dynamical system. In this work, we focus on the climb, cruise, and descent

phases of the flight and leave take-off and landing phases for our future work.

The integrated optimal control problem is constructed as,

Problem 4.

J∗ =min
T,CL

∫ t1

t0

(CI1 + I(t))dt+

∫ t2

t1

(CI2 + I(t))dt+

∫ t3

t2

(CI3 + I(t))dt (3.32a)

s.t. ẋ = fk(x,u, t), k = 1, 2, 3 (3.32b)

xk ∈ Xk, (3.32c)

uk ∈ Uk, (3.32d)

with state xk = [y h v γ θ]⊤ and control uk = [T CL]
⊤; Xk and Uk designate state and control

constraint sets for each phase, respectively.

For the climb and the descent phase, box constraints for all states and the lift force are the same

as Eqs.(3.31) and Eq.(4.22); the thrust constraint during the descent phase is 0.3 ≤ T ≤ 7.5 kN. For

the cruise phase, both the altitude and the flight path angle are constant, namely, h ≡ 3000m and

γ ≡ 0 deg; other constraints for the states and the control inputs are the same as the climb phase.

The dynamics in each phase is given as follows:

Cruise phase (k=2):

v̇ =
T −D
m

(3.33a)

ẏ = v (3.33b)

θ̇ = − I
Q

= −
Uoc −

√
U2
oc − 4PbatR

2RQ
(3.33c)

L =W, h = 3000m (3.33d)
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Climb and descent phases (k=1,3):

v̇ =
T −D −W sin γ

m
(3.34a)

γ̇ =
L−W cos γ

mv
(3.34b)

ḣ = v sin γ (3.34c)

ẏ = v cos γ (3.34d)

θ̇ = − I
Q

= −
Uoc −

√
U2
oc − 4PbatR

2RQ
. (3.34e)

This integrated problem is more involved than previous instances of optimal control examined in

this paper as we do not know the values of t1, t2, and t3. In addition, the boundary conditions

for the variables v and θ for each phase are unknown. To address these issues, a new independent

variable is introduced, and the problem is reformulated accordingly [46].

The main idea behind the proposed approach is to make the unknown switching times part of

the dynamic states; this is facilitated by introducing a new independent variable τ with respect to

which the switching times are parameterized. Hence, there is a linear relationship between the new

variable and the original time variable, and the slope of this linear relation changes at each interval

during the switches/transitions. In this direction, it is assumed that there are N = 2 switches

(N + 1 = 3 time intervals); then the relation between τ and t is given as

t =

{
(N + 1)ts1τ, if 0 ≤ τ ≤ 1

N+1 ;

(N + 1)(tsi+1 − tsi)τ + (i+ 1)tsi − itsi+1, if i
N+1 ≤ τ ≤

i+1
N+1 ,

(3.35)

where tsi is the i-th switching time; note that these are the additional variables with respect to our

original problem.

Accordingly, the dynamics of the system with respect to τ is,

dx

dτ
= (N + 1)(tsi+1 − tsi)fi(x, u, t(τ)), (3.36)
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and the objective function assumes the form,

L̂(x̂, u, τ) = (N + 1)(tsi+1 − tsi)L(x, u, t(τ)), (3.37)

where x̂ = [x, ts1, . . . , tsN ] is the extended state.

Applying this strategy to the multi-phase DOC minimization for AEA, we have N = 2 with

three extra states in our dynamical model. Subsequently, we implement this method in Tomlab

and obtain the numerical results as shown in Figs. 3.13 and 3.15. For the climb phase, the initial

and terminal conditions are the same as in the previous section. Then, for the cruise and descent

phases of the flight, all states except for the flight path angle are set to be continuous (assuming

that there can be a steep change in the flight path angle); the terminal condition for the cruise

phase is when the horizontal position reaches 300km. Finally, for the descent phase, the terminal

conditions are consistent with altitude decreasing to zero and the horizontal flight distance of 57km

(approximately satisfying the “Rule of three”).
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Figure 3.12: A complete flight phase; (a) Horizontal distance; (b) Velocity (magnitude).
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Figure 3.13: A complete flight phase; (a) Altitude; (b) Flight path angle.
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Figure 3.15: A complete flight phase; (a) Thrust; (b) Lift coefficient.

Examining Fig. 3.13 to Fig. 3.15 and comparing them with results obtained in [3] and the previous

section, we note that for the climb phase, the velocity and flight path angle profiles are different

from the results of the single-phase optimization approach. In the current setup, the velocity profile

is monotonically increasing, and the flight path angle decreases to zero at the end of the climb

phase. Correspondingly, the thrust profile is no longer constant during the climb phase, and the lift

coefficient profile needs to decrease to about 0.6 at the end of the climb phase. During the cruise

phase, we still have a similar control structure and state profiles analogous to the single optimization

approach. However, the thrust variation is smaller than that for the single optimization case. For

the descent phase, we also have a similar control structure and state profiles as compared with the

single optimization approach.

3.5 Simulink model with different battery blocks

In this section, we present the Simulink model developed in conjunction with the proposed

modeling and control approach for AEA energy management, as depicted in Fig. 3.16.
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Figure 3.16: AEA Simulink Model.

This model is designed to be configurable, allowing the demonstration and validation of various

facets of AEA energy management. For example, the battery subsystem is implemented as an

interchangeable “variant subsystem”, which enables the selection of multiple battery models prior to

simulation. Three battery models with different fidelities are available to explore the impact of flight

dynamics on the battery pack. The corresponding optimal solutions are obtained from Tomlab and

treated as tab signals to generate the command signals in the Simulink model. The primary blocks

in the Simulink model are described in the following,

• Battery models: This variant subsystem contains three battery models: the ideal battery

model, the ECM, and the SPM. The ideal battery model is a simple battery block from the

Simulink Library Browser with minimal internal resistance (the model cannot be run with

zero internal resistance) and no dynamics. The ECM is a Matlab function representing the

relation between open circuit potential and the SOC of the battery; the input of this function

is the SOC of the battery pack. The SPM, on the other hand, involves ODEs and Differential

Algebraic Equations (DAEs); we utilize Matlab “ode15s” to solve the corresponding ODEs and

DAEs at every second and take one of the states (open circuit potential) as the output of this

block. The input of this block is the current passing through the battery.
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• Battery sensors: This block observes the voltage and current of the battery while also

computing the SOC of the battery (by integrating the current and then dividing the total

charge of the battery) as well as the total operating cost. Note that the method utilized for

computing the SOC of the battery is an idealization; SOC measurements are, in general, more

challenging.

• DC-DC Converter and Electric Motor: These are standard devices from the Simulink

Library Browser. The Motor block includes specific components for computing the power load

and the torque load.

• Cmd: This block generates command signals for the aircraft, including the thrust force, lift

coefficient, and flight path angle. The optimal solution obtained from Tomlab is used as tab

data; then, interpolation with the time signal is applied to compute the command signals. A

larger amount of tab data from the Tomlab results in more accurate command signals.

• Aircraft Model: Three aircraft models with different configurations are implemented: E-fan

1.0, a two-seat aircraft, and Eviation Alice. The second model provides means of including

customized data for an aircraft. This block takes the command signals from “Cmd” block and

propagates values of aircraft speed, horizontal distance, and altitude.

Table 3.4: Comparison of total costs with three distinct battery models.

Battery model Total cost
Ideal 738.1
ECM 690.9
SPM 675.8

We now proceed to implement the optimal trajectories obtained from Tomlab on the Simulink

model. Here we present the results for the cruise phase with the same flight conditions as in

Table.3.2.

By examining Fig. 3.17 and Table 3.4, different battery models lead to variations in battery cell

performance and total cost for the flight. For the SPM case, the voltage of the battery pack is
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Figure 3.17: Comparisons of voltage and cell current for distinct battery models.

relatively high at the beginning of the discharge phase, resulting in a lower current drawn from the

battery compared to the ideal model. In the meantime, SPM facilitates a better estimation of the

key states for the battery cells, allowing, for example, monitoring the thermal behavior of the cells

during the flight.
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Chapter 4

POWER ALLOCATION AND STRUCTURES STUDY FOR
HYBRID-ELECTRIC AIRCRAFT

The urgent need to mitigate aviation’s environmental impacts and reduce dependence on fossil

fuels, coupled with the current limited range of All-Electric Aircraft, has spurred the development of

Hybrid Electric Aircraft. These innovative aircraft combine conventional gas engines with electric

propulsion systems, presenting the potential for improved efficiency and reduced environmental

impacts. However, the integration of a conventional propulsion path and an electric propulsion

path poses a new challenge: how to allocate power optimally between these two sources to obtain

optimal performance.

To address this challenge, leveraging the well-developed power allocation algorithms from ground

Hybrid Electric Vehicles (HEVs) can significantly benefit the advancement of HEA algorithms.

Ground HEVs have undergone extensive development over the past decades [47, 48, 49, 50, 51, 52, 53],

resulting in robust power allocation algorithms in both research and industry. By utilizing this

wealth of knowledge, the development of algorithms for aircraft can greatly benefit and progress.

In the case of ground HEVs, an energy management system plays a crucial role in controlling

and coordinating power generation, energy storage, and power flow within subsystems to optimize

overall system efficiency [54]. The purpose of the energy management system is to ensure that

power is allocated and utilized in the most efficient way. Similarly, an efficient energy management

system is vital to HEA. However, several key characteristics of aircraft need careful attention before

borrowing experiences from HEV to HEA:

1. Operational Challenges. The demanding operational conditions encountered by aircraft, char-

acterized by factors such as extremely low temperatures, intricate aerodynamics, and unpre-

dictable weather patterns, pose unique challenges and requirements for the energy manage-

ment systems of HEA. The power allocation algorithm must exhibit adaptability across diverse

operating conditions to ensure efficient and reliable performance.
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2. Weight sensitivity. Ground HEVs focus primarily on efficient propulsion for driving on roads,

while the aircraft’s propulsion system requires sufficient power for both propulsion and pro-

viding enough lift force to maintain flight. Consequently, HEA is very sensitive to weight;

certain structures suitable for ground vehicles may not be a good option for aircraft;

3. Types of engines. Ground vehicles usually use an internal combustion engine (ICE), while

aircraft employ different types of gas engines based on their size and flight missions, introducing

additional complexity in designing the energy management system for HEA. Each engine

type has unique operational characteristics, efficiency profiles, and power delivery capabilities,

requiring specific power allocation strategies to optimize performance.

Despite these differences, there is still great potential to learn from ground HEVs and adapt

their power allocation algorithms to the unique needs of HEA. The purpose of power allocation can

be multifaceted. The energy consumption, which includes the burning of fuel and consumption of

the battery charge, the amount of emissions produced while in flight, the rate at which the battery

degrades, and the amount of noise, can all be factored into the objective function. For designing

the energy management system for HEA in this dissertation, we only focus on fuel consumption

minimization, which will indirectly result in fewer emissions. The basic assumption is that the

flight profile for HEA is predetermined, and the power request is known in advance. The proposed

algorithms aim to efficiently allocate the available power resources from the engines and the electric

motors.

When developing the power allocation algorithm in this chapter, it is assumed that the propulsion

system has a parallel structure, wherein the engines and the electric motors are able to drive the

aircraft both individually or together. For ground HEVs, there are three most commonly used

configurations: a) the series, b) the parallel, and c) the series-parallel (power-split). In the series

configuration, the engine is used for driving a generator to power the electric motor when the battery

does not have enough power. The power split configuration combines the series configuration and

the parallel configuration together. In all of these configurations, there is a mechanical connection

between the ICE and the electric motor; hence, the battery can be charged through regenerative

braking and by the ICE.
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Existing literature on hybrid architectures for aircraft propulsion [55, 56, 57, 58] mostly borrows

principles from ground HEVs, often assuming that the gas turbines and the electric motors should be

connected mechanically, allowing the turbine to charge the battery during flight. This connective

mechanism has several potential benefits: (a) the engine can run in its most fuel-efficient region

by utilizing the electric motor as an extra load to conserve fuel, and (b) the electric motor can

operate in “one-engine-inoperative” (OEI) mode after the climb phase assuming the battery has

sufficient capacity to support the aircraft landing safely. These benefits are compatible with series,

parallel, and series-parallel configurations. On the other hand, MagniX–a manufacturer of electric

propulsion systems for electric aircraft–proposed a novel parallel hybrid structure in 2021 in which

the engine and electrical paths are independent (without a mechanical connection in place). In

this configuration, the electric motor and the engine work together during the climb phase, while

the engine is responsible for the cruise and descent phases. In addition, one can bypass the use

of the engine and transition the HEA to an AEA–when the energy density of the battery reaches

the desired level. In the automotive industry, this structure is classified as a “Through-the-Road”

parallel hybrid electric vehicle [59], and it facilitates the transition from conventional automobiles

to hybrid electric vehicles. This dissertation compares these two structures in the context of the

aforementioned benefits, and specifically, through the lens of optimal power allocation.

This chapter is organized as follows. First, related work of power allocation for ground HEVS

and HEA, and preliminary design for HEA, are provided in §4.1. In §4.2, a detailed power allocation

algorithm for HEA is developed and analyzed. In §4.3, two parallel hybrid electric structures are

compared in terms of fuel consumption, and numerical examples are provided.

4.1 Related works

In the context of energy management for ground HEVs, control strategies can be broadly classi-

fied as rule-based methods and optimization-based methods [60]. Rule-based strategies depend on

modes of operation, where rules are determined based on heuristics, intelligence, or mathematical

models, usually without a priori knowledge of a predetermined driving cycle [61]. Rule-based strate-

gies can be divided into two subcategories: deterministic and fuzzy [62, 63, 64] rule-based control

strategies. Peng et al. [65] developed a rule-based energy management strategy that is calibrated

using dynamic programming (DP), optimizing the control actions for each mode.
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On the other hand, optimization-based strategies are generally classified as real-time optimiza-

tion and global optimization. Global optimization includes linear programming [66], DP [67,

68, 69, 70], optimal control theory (the minimum principle) [71, 72], stochastic DP [73], genetic

algorithms [74, 75, 76], etc. Real-time optimization includes methods such as equivalent fuel

consumption minimization [77, 78], model predictive control [79, 80, 81], reinforcement learn-

ing [82, 83, 84, 85], etc.

This dissertation primarily focuses on optimal control theory for HEA. The minimum principle

has been widely applied to the energy management of ground HEVs, and numerous strategies have

been developed in order to implement the minimum principle in real time. Kim et al. [77] applied

the minimum principle to a power-split HEV, and optimal control is obtained from the Hamilto-

nian function. This unique property of this HEV problem, where the co-state corresponding to the

battery’s State of Charge (SOC) remains constant, allows for easy real-time optimal control imple-

mentation. They also compared the results of the minimum principle with DP and demonstrated

that the proposed algorithm is globally optimal. Hou et al. [86] proposed a piecewise linear approx-

imation to convexify the Hamiltonian function such that the minimum principle-based algorithm

can be implemented in real time. The numerical results in a parallel HEV demonstrated a 6.96%

reduction in fuel consumption compared to a conventional rule-based strategy, and a significant

increase in computational performance.

Regarding power allocation algorithms for HEA, which utilize two energy sources for the propul-

sion system, several researchers have made significant contributions. Leite and Voskuijl [87] utilized

DP to obtain an optimal energy management scheme for HEA for a given flight profile. Doff-Sotta et

al. [88] developed a convex formulation for HEA energy management and demonstrated that the

optimal control strategy significantly reduces fuel consumption compared to heuristic methods.

Zhang et al. [89] proposed a nonlinear model predictive control-based optimal energy management

strategy to minimize fuel consumption during flight. Li et al. [90] developed an adaptive power dis-

tribution strategy for a fuel cell-electric hybrid aircraft and verified the corresponding algorithms on

a prototype electric aircraft. Donateo et al. made important contributions to energy management in

different aircraft configurations. In [91], they applied DP for energy management for a lightweight

rotorcraft, where the corresponding optimal control was formalized in terms of a shortest path prob-

lem on a graph, followed by the application of the Dijkstra algorithm for its solution; in [92], they
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applied DP and the Equivalent Consumption Minimization Strategy (ECMS) in a hybrid electric

helicopter to obtain the optimal usage of the battery for given flight missions; significant fuel re-

duction is achieved compared with the conventional turboshaft engine-only aircraft. Furthermore,

[92] demonstrated that the fuel savings are the same whether or not the battery pack is charged

during flight. Analogous results will be presented for the 19-seat fixed-wing conceptual aircraft in

this chapter.

Although a few commercial HEA have been manufactured and are available on the market [12,

13, 10, 15], publicly accessible technical data and characteristics of these aircraft are rather limited.

Nevertheless, numerous studies have delved into the design space of HEA, exploring various aspects

of their development. Wall and Meyer [93] surveyed the development of simulated and physically

realized Hybrid Electric Propulsion (HEP) systems and presented their suggestions on system mod-

eling and control of HEP systems for future research. Zamboni et al. [94] proposed a methodology

to conceptually model and size the HEP system. They concluded that the choice of HEP system

architectures depends on the performance capability of the electric components, in particular of the

battery. Finger and Braun [95] studied the parallel hybrid electric propulsion system for four differ-

ent types of aircraft, including VTOL aircraft, analyzing specific scenarios where HEP proves to be

energy-efficient and situations where it might have limited benefits. [96] proposed a methodology

to determine the size of aircraft with different propulsion configurations, including hybrid electric

and fully electric. De Vries et al. [97] also proposed a comprehensive preliminary sizing method for

aircraft with different propulsion configurations. In [98], the conceptual design of HEA has been

examined. This work introduced the morphologies and architectures of aircraft with HEP systems

and proposed sizing methodology and corresponding integrated performance of HEA. The work [99],

on the other hand, discussed the range equation for a series HEA. Isikveren et al. examined the

design of VTOL aircraft [100]. Finger et al. compared two design approaches utilizing an exist-

ing 19-seat conventional aircraft as the baseline model [18]. One of the conceptual models in the

aforementioned work is taken as the aircraft model in this dissertation as described in §2.1.

4.2 Power allocation algorithm for HEA

The power allocation for HEA is formulated as an optimal control problem under the following

assumption.
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Assumption 5. The flight profile is predetermined, and the velocity is assumed to be a constant

value.

The power algorithm is developed for the SOUL aircraft with one internal combustion engine

and one electric motor.

4.2.1 Power relation in the propulsion system

Several key components to formulate the optimal control problem, including the power demand

for maintaining flight, the available power resources in the propulsion system, and their relation,

are given as follows.

Power demand

The power required Preq to maintain flight at a certain velocity v and thrust T is given as,

Preq = Tv. (4.1)

Under the constant velocity assumption, the following relation is derived from Eq.(2.1c),

T = D +W sin γ, (4.2)

by combining Eq.(4.1) and Eqs.(2.2), the power demand can be computed as,

Preq =
1

2
ρSCD,0v

3 +
Kg2 cos2 γ

ρSv
m2 +mg sin γv. (4.3)

During the constant altitude cruise phase, all elements on the right-hand side of Eq.(4.3) are

constants except for the total mass m. Therefore, the required power is a function of the aircraft’s

total mass in this phase. During the accelerated climb and descent phases, the air density ρ is a

function of the altitude h, which means that the required power becomes a function of both the

total mass and the flight altitude.
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Power available in the propulsion system

In the aircraft SOUL, there are two power sources available in the propulsion system: the internal

combustion engine that generates mechanical power by burning fuel and the electric motor that is

supplied by the battery pack and converts electric energy into mechanical energy.

1. Power provided by the engine:

In this dissertation, it is assumed that the output power of the engine is regulated by the

engine’s throttle. The throttle serves as the control input in the optimal control problem. The

relationship between the output power of the engine Pe,out and the throttle setting is given

by:

Pe,out = τPe,max, (4.4)

where Pe,max is the maximum output power of the engine. The objective of the optimal

control problem is to minimize the fuel consumption. Hence, understanding the specific fuel

consumption (SFC) rate of the engine is essential. The actual fuel rate map of the engine

is usually confidential. In this section, the data point (efficiency vs. output power) from

Friedrich’s paper [17] is adopted to fit an approximate curve, shown in Fig. 4.1. The fuel

consumption per hour is modeled as a fourth-order polynomial of the engine’s output power.

It is observed that the optimal working region for the engine is about 4.5kW of output power.

2. Power provided by the electric motor:

It is assumed that the transfer efficiency of the electric motor remains constant, and the output

power from the electric path Pm,out is determined by,

Pm,out = ηmPbat = ηmUI, (4.5)

where ηm is the total efficiency of the electric path; U is the terminal voltage of the battery

pack; I is the current flowing out of the battery pack. It is assumed that the voltage of the

battery pack is a constant value, and the SOC of the battery pack is one of the states in the

optimal control problem. The dynamic of the SOC is given by Eq.(3.5).
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Figure 4.1: Fuel consumption rate at different output power.

Power relation in the propulsion system

The power available in the propulsion system is provided by the engine and the electric motor;

the relation can be presented as

Preq = ηp(Pe,out + Pm,out), (4.6)

where ηp is the transfer efficiency of the propeller, which is also assumed to be a constant value.

Combining Eq.(4.1), Eq.(4.4), and Eq.(4.5), the following useful relation can be computed,

Tv = ηp(τPe,max + ηmUI). (4.7)

4.2.2 States dynamics and operating modes analysis

In the fuel minimization problem for the aircraft SOUL, the throttle of the engine is considered

as the control input; the total mass of the aircraft and the SOC of the battery pack are the states.
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The dynamics of these two states are given as

ṁ = −ṁf = −c, (4.8a)

θ̇ = − I
Q
, (4.8b)

where c is the fuel consumption rate (in kg/h), which is a fourth-order polynomial of the engine’s

output power, given in Eq.(4.9); Q is the total charge in the battery pack;

c = a0 + a1 · Pe,out + a2 · P 2
e,out + a3 · P 3

e,out + a4 · P 4
e,out. (4.9)

A HEP in a ground vehicle offers various operating modes to optimize energy usage and perfor-

mance. These operating modes include:

1. Electric Mode: The vehicle operates solely on the electric motor, drawing energy from the

battery pack. The ICE remains inactive in this mode.

2. Engine Mode: The vehicle operates solely on the ICE, and the electric motor remains

inactive.

3. Combined (Hybrid) Mode: Both the ICE and the electric motor are active to drive the ve-

hicle. The power distribution varies depending on the driving conditions and power demands.

4. Power Split Mode: In this mode, the ICE drives the vehicle and simultaneously charges the

battery through the electric motor (working as a generator).

5. Regenerative Braking Mode: During braking or deceleration, the electric motor works as

a generator, converting kinetic energy into electrical energy to charge the battery.

While theoretically, a HEA could potentially operate in all of these modes, practical constraints

related to mechanical connections in the propulsion system and aerodynamics make it impractical

and less beneficial to implement regenerative braking mode for aircraft. As a result, the regenerative

mode is not considered for aircraft applications. Additionally, the aircraft SOUL cannot operate



60

in motor-alone mode due to size limitations (we refer the interested readers to [57] for a detailed

explanation). As a result, the engine must be active and burn fuel at all times; therefore, the

time history profile of the total mass will exhibit a monotonous decrease during flight due to fuel

consumption.

When the HEP system works in the combined mode, the θ decreases as the electrical charge is

drawn from the battery pack. Conversely, in the power split mode, the θ increases as the battery

pack is charged through the electric motor acting as a generator.

The total mass of the aircraft is constrained by the size of the fuel tank, which determines the

aircraft’s fuel capacity. Let mmin and mmax be the lower and upper bounds for the aircraft’s total

mass, respectively; mmax −mmin = mf,0, where mf,0 is the mass of the fuel initially loaded onto

the aircraft.

For θ, conservative boundary values are set to protect battery cells. In this chapter, the minimum

value for θ is assumed to be θmin = 0.3, and the maximum value for θ during the cruise phase is

set to θmax = 0.8 to avoid overcharging the battery in flight; for the climb phase, its maximum

value is set to 1, indicating that the battery starts from its fully charged state. The initial mass is

represented as m0; the initial SOC of the battery pack is θ0.

4.2.3 Fuel minimization problem

By incorporating these constraints on the total mass and SOC, the formulation of the optimal

energy management strategy allows for efficient energy utilization and optimal aircraft performance

during different flight phases. The primary objective is to minimize fuel consumption while ensuring

the integrity and performance of the battery pack throughout the flight. The decision not to explic-

itly consider battery charge consumption in the optimization problem is based on the assumption

of a simple battery model with a constant voltage output. The value of battery charge consumption

can be determined based on the initial and final conditions of the SOC of the battery pack. This

simplification allows for a more tractable and computationally efficient optimization problem. Thus,

the optimal control problem of interest can be formulated as follows:
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Problem 5. Determine the time profile of τ that solves the following problem:

J =min
τ

−m(tf ), (4.10a)

s.t. ṁ = −c, (4.10b)

θ̇ = − I
Q
, (4.10c)

m(t0) = m0; θ(t0) = θ0, (4.10d)

0.1 ≤ τ ≤ 1, (4.10e)

mmin ≤ m ≤ mmax; θmin ≤ θ ≤ θmax. (4.10f)

Remark 1. Since flight profiles are given in advance, the terminal time tf is given, and terminal

boundary conditions for states are not necessary.

Theoretical analysis

In Problem 5, the state constraint for θ is an active constraint. This means that the constraint

on θ plays an active role in shaping the optimal control solution. In order to analyze the first-order

necessary condition for optimality in such an optimal control problem with state constraints, a

modified minimum principle is required.

Informal theorem [101] Given the following optimal control problem:

J = min
u

∫ tf

0
F (x(t),u(t), t)dt+K(x(tf ), tf ) (4.11a)

s.t. ẋ(t) = f(x(t),u(t), t), x(0) = x0, (4.11b)

g(x(t),u(t), t) ≥ 0, (4.11c)

h(x(t), t) ≥ 0, (4.11d)

a(x(tf ), tf ) ≥ 0, (4.11e)

b(x(tf ), tf ) = 0, (4.11f)

where x represents the states of a dynamical system; u is the control input; F is the running cost;

K is the terminal cost; the Hamiltonian H and Lagrangian L of this optimal control problem are
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defined as

H(x,u,λ, t) = F (x,u, t) + λT · f(x,u, t), (4.12)

L(x,u,λ,µ,ν, t) = H(x,u,λ, t) + µT g(x,u, t) + νTh(x, t), (4.13)

then the optimal solution can be characterized as follows: Let x∗(·),u∗(·) be an optimal pair for the

problem (Eqs.(4.11)) over a fixed interval [0, tf ], such that u∗(·) is right-continuous with left-hand

limits. Assume that x∗(·) has only finitely many junction times. Then there exist a piecewise

absolutely continuous costates trajectory λ(·), piecewise continuous multiplier functions µ(·) and

ν(·), and a vector η(t̃i) for each point t̃i of discontinuity of λ(·), for which the following conditions

hold almost everywhere:

u∗(t) = argmin
u
H(x∗(t),u(t),λ(t), t), (4.14a)

L∗
u[t] = H∗

u[t] + µT g∗u[t] = 0, (4.14b)

λ̇(t) = −L∗
x[t],

dH∗[t]

dt
=
dL∗[t]

dt
, (4.14c)

µ(t) ≥ 0, µ(t)g∗[t] = 0, (4.14d)

ν(t) ≥ 0, ν(t)h∗[t] = 0. (4.14e)

At the terminal tf , the transversality conditions are given based on more information about controls.

For any time t̃ in a boundary interval and for any contact time t̃ (states hit the boundary conditions),

the costate trajectory λ may have discontinuity given by the following jump conditions:

λ(t̃−) = λ(t̃+) + η(t̃)h∗x[t̃], η(t̃) ≥ 0, η(t̃)h∗[t̃] = 0, (4.15a)

H∗[t̃−] = H∗[t̃+]− η(t̃)h∗t [t̃]. (4.15b)

This theorem is applied to Problem 5. First, the Hamiltonian (there is no running cost F in this

problem; only the terminal cost is considered) and Lagrangian for this problem are given as

H(x,u,λ, t) = λm(ṁ) + λθ(θ̇), (4.16)

L(x,u,λ,µ,ν, t) = λm(ṁ) + λθ(θ̇) + ν1(−θ + θmax) + ν2(θ − θmin), (4.17)
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to simplify expressions, we write the dynamics for m and θ as

ṁ = −c0 − c1 · τ − c2 · τ2 − c3 · τ3 − c4 · τ4, (4.18a)

θ̇ = −(A+Bm2 +mgv sin γ)/ηp − τPe,max

ηmUQ
, (4.18b)

where A = 1
2ρSCD,0v

3 and B = Kg2 cos2 γ
ρSv .

The optimal control should satisfy Eq.(4.14a), which is

u∗ = argmin
u

(λm(ṁ∗) + λθ(θ̇∗)), (4.19)

and the dynamics of costates with respect to time is derived from Eq.(4.14c),

λ̇m = − ∂L
∂m

= −[−λθ
2Bm+ gv sin γ

ηmUQηp
], (4.20a)

λ̇θ = −
∂L

∂θ
= −[−ν1 + ν2]. (4.20b)

Analyzing Eq.(4.19), we observe that the Hamiltonian is a fourth-order polynomial of the control

input. As such, in order to obtain its minimum, we could take its derivative with respect to the

control input, arriving at the following condition,

λm(−c1 − 2c2τ − 3c3τ
2 − 4c4τ

3) + λθ(
Pe,max

ηmUQ
) = 0. (4.21)

In this equation, both λm and λθ change along with time; hence, we do not have a closed form for

the optimal control. One way to solve this problem based on our analyses is to express τ with λm,

λθ and other parameters from Eq.(4.21), then construct a set of ODEs and solve an initial value

problem (with initial guesses for the costates). The states of this ODE initial value problem are

original states and the corresponding costates λm and λθ.

4.2.4 Numerical results

The numerical results obtained from Tomlab for Problem 5 during different phases are presented.

The information about the costates provided by Tomlab helps to testify the consistency between
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the numerical results and theoretical analyses.

Constant altitude cruise phase

For illustrating the impact of flight profiles on optimal power allocation results, we consider four

distinct flight profiles with different boundary conditions during the cruise phase,

1. Case 1: v = 20m/s, θ(t0) = 0.6, θ(tf ) = 0.5;

2. Case 2: v = 25m/s, θ(t0) = 0.6, θ(tf ) = 0.5;

3. Case 3: v = 30m/s, θ(t0) = 0.6, θ(tf ) = 0.5;

4. Case 4: v = 30m/s, θ(t0) = 0.8, θ(tf ) = 0.4.

For all cases, the terminal horizontal distance is set to be 74km, and the corresponding terminal

time tf can be computed based on the flight profile and required speed; the initial total mass is

m0 = 210 kg; constraints for states and control input are given as

185kg ≤m ≤ 210kg (4.22a)

0.3 ≤θ ≤ 0.8 (4.22b)

0.1 ≤τ ≤ 1 (4.22c)

The optimal solutions provided by Tomlab lead to the following observations:

1. Charging the battery during the cruise phase slightly improves the engine efficiency.

Fig. 4.2 and Fig. 4.3 show the time history profiles of case 1. In this case, the engine is allowed

to charge the battery pack through the electric motor/generator. It is observed from Fig. 4.2c

that the SOC of the battery pack increases from 10 minutes to about 47 minutes, and on this

interval, the fuel rate is relatively low compared to other intervals. The comparison between

Fig. 4.3c and Fig. 4.3a indicates that when the fuel rate is relatively low, the output engine

power is about 4.2 kW, which is within the engine’s efficient working region. In contrast,

during other intervals when the engine’s throttle is only 0.1, the fuel rate is nearly 2.45 kg/h.
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Figure 4.2: Case 1–control input and states: (a) the throttle of the engine, (b) the total mass, (c)
the SOC of the battery pack.
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Figure 4.3: Case 1–power allocation and fuel consumption rate: (a) engine output power, (b) battery
output power, (c) the corresponding fuel rate (kg/h) under control.

The total fuel consumption of case 1 is 2.31 kg when we allow the engine to charge the battery

during flight. Now, we change one of the constraints while implementing Tomlab to solve

this problem. The original constraint on the current is −220A ≤ I ≤ 220A; now, we set this

constraint as 0 ≤ I ≤ 220A, meaning that we cannot use the engine to charge the battery.

The results are given in Fig. 4.4 and Fig. 4.5.

The total fuel consumption is 2.4kg when we change the current constraint. By comparing

this with the previous case, where the engine was allowed to charge the battery, we observe

a minimal amount of fuel saving of 0.09 kg (the aircraft model we use here is an ultralight
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aircraft, and the average fuel rate is 2.2kg/h, which is a relatively small value; hence the fuel

saving is relatively small). The reason for this fuel saving is that when the engine is utilized to

charge the battery, it operates in a more efficient region where the specific fuel consumption

rate is relatively low. This optimized operation leads to a slight improvement in overall engine

efficiency, resulting in the observed fuel saving.
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Figure 4.4: Case 1 (Not charging the battery pack during flight)–control input and states: (a) the
throttle of the engine, (b) the total mass, (c) the SOC of the battery pack.
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Figure 4.5: Case 1 (Not charging the battery pack during flight)–power allocation and fuel con-
sumption rate: (a) engine output power, (b) battery output power, (c) the corresponding fuel rate
(kg/h) under control.

2. Different cruise speeds lead to different power allocation as well as different switching times.



67

The SOC and fuel rate for the first three cases are compared, and the results are presented in

Figures 4.6 to 4.8.
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Figure 4.6: The time history profiles of control input for the first three cases.

0 10 20 30 40 50 60 70

time(min)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
O

C

State of charge of the battery

(a) case 1

0 5 10 15 20 25 30 35 40 45 50

time(min)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
O

C

State of charge of the battery

(b) case 2

0 5 10 15 20 25 30 35 40 45

time(min)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
O

C
State of charge of the battery

(c) case 3

Figure 4.7: The time history profiles of SOC for the first three cases.

By comparing the control input profiles (Fig. 4.6) and the corresponding fuel rate profiles

(Fig. 4.8), we can observe a common trend in the logic of optimal control solutions for all three

cases. The optimal control strategy steers the throttle to around 0.6 while simultaneously

satisfying the boundary conditions. This particular throttle setting allows the aircraft to

achieve an efficient power allocation, which is achieved by charging the battery pack (Fig. 4.7).

In this relatively efficient region, the fuel rate hovers around 2.1 kg/h, which is the minimum

value that the engine can take.
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Figure 4.8: The time history profiles of fuel rate for the first three cases.

3. Boundary conditions also affect the power allocation results.

To verify this statement, we compare cases 3 and 4, both having the same cruise speeds but

different boundary conditions for the SOC of the battery pack. Since the trend of the engine

power profile is identical to the control input profile, we focus on comparing the control input

profiles here. From Fig. 4.9, it is observed that for case 3, by taking the combined mode all

the time, the propulsion system can achieve its optimal fuel efficiency. For case 4, we have

more battery capacity available, and the optimal solution shows that the HEP system should

run out of battery capacity and try to stay in the efficient region as long as possible.
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Figure 4.9: The time history profiles for case 3.

The fundamental characteristic of the control strategy during the cruise phase is to steer the
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Figure 4.10: The time history profiles for case 4.

engine to work within its efficient region for as long as possible while still satisfying the boundary

conditions for the SOC. When the power demand exceeds the combination of efficient engine power

(about 4.5 kW) and electrical power, the HEP system should run out of available battery charge

while keeping engine power around 4.5 kW; when the power demand is lower than the efficient

engine power, the control strategy should adopt the power split mode on certain time intervals.

Constant speed climb phase

One of the primary benefits of the HEP system is its energy-saving potential due to the inclusion

of an additional electrical energy source, which also allows the downsizing of the engine. Hence,

during the climb phase, the engine and the electric motor should work in the combined mode to

drive the vehicle together. With this observation, we will now delve into fuel minimization for HEA

during the climb phase.

The flight profile is given as follows: the climb speed is 20 m/s, the terminal climb height is

700 m, and the terminal horizontal distance for the climb phase is about 3.7 km.

Eq.(4.3) provides the method of computing the required power to fly at a constant speed. The

air density is constant during the cruise phase; however, during the climb phase, this value varies

with the altitude. When using Tomlab to solve the optimal control problem, the US Standard

Atmosphere (1976) model is applied to calculate the air density based on altitude information.

For states and control input constraints, it is assumed that the battery pack is fully charged
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before take-off (θ = 1). Hence, constraints during the climb phase are given as

185kg ≤m ≤ 210kg (4.23a)

0.3 ≤θ ≤ 1 (4.23b)

0.1 ≤τ ≤ 1 (4.23c)

The numerical solutions are given in Fig. 4.11 and Fig. 4.12.
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Figure 4.11: Climb phase control input and states: (a) the throttle of the engine, (b) the total mass,
(c) the SOC of the battery pack.
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Figure 4.12: Climb phase power allocation and fuel consumption rate: (a) engine output power, (b)
battery output power, (c) the corresponding fuel rate (kg/h) under control.
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During the cruise phase, the required power exhibits a monotonically decreasing behavior as

the aircraft burns fuel continuously. However, during the climb phase, the required power follows

a different trend. This is attributed to the fact that Preq depends not only on the total mass

but also on the air density ρ, which varies with altitude. Consequently, as the aircraft ascends, the

changing air density impacts the power requirements. From the fuel consumption figure (Fig. 4.12c),

a pattern similar to that during the cruise phase is observed: when the engine’s output power is

around 4.5 kW, the engine operates within its optimal operation region, resulting in relatively low

fuel consumption rate during this region. Fig. 4.11a and Fig. 4.12c demonstrate that the optimal

solution involves steering the engine to operate within its optimal region.

To further verify this observation, the following climb profiles are tested, and a comparison of

the power allocation results is made.

1. Case 1: h = 700 m, xcl = 2 nm, γ = 10.7 deg;

The power required to climb is around 9.62 kW; considering the efficiency of the propeller, the

power demanded from the propulsion system is around 14.17 kW; the optimal solution shows

that the engine’s output power should be around 4.72 kW, and the electrical power should be

about 11.8 kW;

2. Case 2: h = 700 m, xcl = 3 nm, γ = 7.2 deg;

The power required to climb is around 7.15 kW; the power demanded from the propulsion

system is around 10.53 kW; the optimal solution shows that the engine power should be about

4.72 kW, and the electrical power should be around 7.26 kW.

These two cases show that during the climb phase, the required power to fly is higher than the

maximum output power of the engine. As such, the combined mode must be chosen to maintain

flight; what the optimal control does is to allocate the power between the engine and the electric

motor in order to minimize fuel consumption by steering the engine to operate within its optimal

region.
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4.3 Comparison of two parallel hybrid electric configurations

One observation drawn from §4.2.4 indicates that charging the battery during specific flight

conditions slightly enhances the engine’s efficiency. However, it is noteworthy that the reduction in

fuel consumption is minimal. Initially, we hypothesized that this scenario might be attributed to

the size of the aircraft model: the fuel consumption is already quite limited, making it difficult to

observe a clear difference between charging and not charging the battery during flight. To further

investigate this scenario, we applied the power allocation algorithm to a larger conceptual aircraft

(listed in §2.1), yet the resulting fuel-saving remains insignificant. This observation prompts a fun-

damental question: Is it indeed worthwhile to charge the battery during flight at all? Considering

the limited impact on fuel consumption, conducting a more comprehensive investigation and anal-

ysis becomes important to determine the practical benefits and feasibility of implementing battery

charging strategies during flight.

In this section, two parallel hybrid electric configurations, one with a mechanical connection

between the engines and the electric motors and the other without, are compared in the con-

text of fuel minimization. The power allocation algorithm proposed in §4.2 is transformed into a

finite-dimensional optimization problem and employed in both of the aforementioned hybrid electric

configurations. Subsequently, sensitivity analyses are performed to investigate the effects of charging

the battery during flight and the influence of the initial take-off weight on fuel consumption.

4.3.1 Parallel hybrid electric architectures

For a conventional aircraft that relies on engines for propulsion, it is challenging to devise effective

methods to operate the engine within its peak efficiency regime; this is primarily due to significant

variations in power requirements between the climb and cruise phases of a typical flight profile. One

of the key benefits associated with hybrid electric aircraft is the ability to reduce the size of the engine

and utilize the electric motor as supplementary propulsion, allowing the engine to operate at its

most efficient regime during flight. As a result, when adopting this perspective for the development

of hybrid-electric aircraft architectures, designers frequently assume a mechanical connection in

the propulsion system. The most commonly employed architectures include series, parallel, and

series-parallel configurations. The parallel architecture is the most popular configuration due to
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its relatively higher efficiency and lower weight (in comparison with the series configuration), as

well as its simpler energy management (as compared with the series-parallel configuration). In

general, a mechanical connection in the propulsion system enables conventional engines to operate

more efficiently, either by decoupling the engine from the propeller (in the series configuration) or by

taking the electric motor as an extra load for the engine (in the parallel configuration). Nevertheless,

to the best of our knowledge, this potential advantage of having a mechanical connection in HEA

has not been validated, either theoretically or experimentally.

In addition, the mechanical connection between the conventional engine and the electric mo-

tor often necessitates a complex clutch/gearing mechanism and an advanced control algorithm for

the hybrid propulsion system. In addition, charging the battery during flight introduces new chal-

lenges, such as the need for more sophisticated cooling systems and the possibility of battery pack

degradation.

On the other hand, MagniX has recently proposed a novel hybrid structure (similar to the

“Through-the-Road” structure employed in automobiles) for aircraft electric propulsion. In particu-

lar, the conventional engine and electric paths are mechanically independent in the Magnix design,

with two entirely separate control systems for each propulsion path. With this architecture, the

hybrid electric propulsion system can still be advantageous as it allows for efficient engine operation.

Additionally, the absence of mechanical connections reduces the overall weight of the aircraft and

may improve safety due to a simplified mechanical system.

This dissertation examines the standard parallel architecture (referred to as the connected con-

figuration) and the MagniX architecture (referred to as the independent configuration). In the

connected configuration, as illustrated in Fig. 4.13, both the internal combustion engine/gas tur-

bine and the electric motor are connected to the propeller. As a result, this configuration supports

the following operating modes: a) Engine mode, b) Motor mode, c) Combined mode, and d) Power

split mode (details listed in §4.2.2). In the independent configuration, as illustrated in Fig. 4.14,

the propulsion system retains the first three operating modes; however, the engine cannot charge

the battery during flight.
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Figure 4.13: Connected parallel hybrid architecture.

Figure 4.14: Independent parallel hybrid architecture.

4.3.2 Power allocation problem transformation

The HEA power allocation problem in §4.2 (represented as an optimal control problem) is refor-

mulated as a finite-dimensional optimization problem; the second-order sufficient conditions for the

solution to this problem are verified, and numerical simulations for the conceptual aircraft model

(in §2.1.3) are then provided in this subsection.

Analytic setup

In §4.2, the aircraft was assumed to have a connected hybrid structure and that the engine can

charge the battery during flight. The objective was to minimize fuel consumption, equivalent to

maximizing the terminal weight of the aircraft. The flow rate was assumed to be a fourth-order

polynomial of the engine’s output power. For the conceptual aircraft model proposed in §2.1.3,

however, it is assumed that the flow rate c is nearly a linear function of the engine’s output power.
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Instead of using the SFC and power to compute the flow rate, a representation of the flow rate as a

function of the output power is derived, and the dynamics of the aircraft mass is re-parameterized

as a linear function of the control input as,

ṁ = −(c1Pe,out + c2Pe,out) = c̃1τ + c̃2. (4.24)

In order to examine the effect of the battery pack capacity on fuel consumption, rather than

the SOC of the battery pack, the remaining charge q in the battery pack is used as a state whose

dynamic is given by

q̇ = −I. (4.25)

In theory, the performance and solution of an optimal control problem are independent of the

magnitude of the states and the control input. In practice, however, numerical issues may arise in

the solver when these magnitudes are vastly different; in Problem 5, the mass of the conceptual

aircraft is approximately 6000 kg, the range of the state of charge of the battery pack is zero to one,

and the battery pack capacity is 400 Ah. Hence, we employ the standard remedy of applying the

affine variable transformations to the aircraft mass and the remaining charge in the battery pack,

namely,

m̂ = a1m+ b1, (4.26a)

q̂ = a2q + b2, (4.26b)

we now define the scaled time t̂ ∈ [0, 1]; the dynamics of “scaled states” with respect to the “scaled

time” is written as,

˙̂m = k11τ + k10, (4.27a)

˙̂q = k21τ + k20 + k22m̂
2 + k23m̂, (4.27b)

where both states are linear in the control input τ . The scaled optimal control problem is now

written as,
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Problem 6. Find τ that solves the following problem

J =min
τ
−m̂(t̂ = 1) (4.28a)

s.t. ˙̂m = k11τ + k10, (4.28b)

˙̂q = k21τ + k20 + k22m̂
2 + k23m̂, (4.28c)

m̂(0) = 1, q̂(0) = q̂0, (4.28d)

q̂(1) = q̂f , (4.28e)

0 ≤ τ ≤ 1, (4.28f)

0 ≤ m̂ ≤ 1, 0 ≤ q̂ ≤ 1, (4.28g)

where −m̂(t̂ = 1) represents the negative of the aircraft’s terminal mass.

The dynamics of both states are linear in the control input with boundaries; hence, this for-

mulation of the power allocation problem is in the form of a bang-bang control problem with state

constraints, where the optimal control switches between the boundary values and possible singular

arcs (we refer the interested reader to [22] for a detailed introduction to the bang-bang principle in

optimal control). When solving this problem using Tomlab for a reasonable flight profile, the only

active state constraint is q̂ = 1; hence, we subsequently only consider the constraint,

S(q̂(t̂)) = q̂ − 1 ≤ 0. (4.29)

in the sequel S(q̂(t̂)) ≤ 0 is denoted as S for brevity. An interval [t̂1, t̂2] ∈ [0, 1] is called a boundary

arc if S(q̂(t̂)) ≡ 0 holds for all t ∈ [t̂1, t̂2]. Hence on the boundary arc the derivative of S with

respect to the scaled time t̂ should be zero for all t̂ ∈ [t̂1, t̂2], where,

dS

dt̂
=
∂S

∂x

∂x

∂t̂
= [0 1]

 ˙̂m

˙̂q

 = ˙̂q, (4.30)

with x = [m̂ q̂]⊤. Hence, the boundary control τb can be computed from dS
dt̂

= ˙̂q = 0 as the following

feedback expression

τb = −
1

k21
(k20 + k22m̂

2 + k23m̂). (4.31)
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The augmented Hamiltonian of Problem (4.28) is given as,

H = λ1 ˙̂m+ λ2 ˙̂q + ηS

= λ1k10 + λ2(k20 + k22m̂
2 + k23m̂) + η(q̂ − 1) + (λ1k11 + λ2k21)τ

= H1 + σ(t̂)τ. (4.32)

Note that the Hamiltonian is linear in the control τ ; from the Pontryagin’s minimum princi-

ple [22], the optimal control on interior arcs with S < 0 is obtained as,

τ∗ =
{ τmax if σ(t) < 0

τmin if σ(t) > 0.
(4.33)

For a boundary arc, the optimal control has been computed as τmin < τb < τmax. Since the

optimal control should minimize the Hamiltonian, this minimum principle yields,

σ(t̂) = 0, for all t̂ ∈ [t̂1, t̂2]. (4.34)

This relation is interpreted as the property that the boundary control behaves formally like a

singular control by Maurer in [102]. Using Tomlab to solve Problem 6, the optimal control follows

a “max-boundary-min” structure. Combining the numerical results with the preceding theoretical

analysis yields the following optimal control structure,

τ∗ =

{ τmax, if 0 ≤ t̂ ≤ t̂1,

τb, if t̂1 ≤ t̂ ≤ t̂2,

τmin, if t̂2 ≤ t̂ ≤ 1.

(4.35)

This optimal control problem is then formulated as a finite-dimensional optimization problem

to investigate the second-order sufficient conditions and the sensitivity to initial state conditions.

This approach is particularly useful when the structure of the optimal control, i.e., the sequence

of bang-bang and boundary arcs, has been derived. The arc-parameterization method in [103] is

applied to formulate the optimization problem with variables x = [ξ1, ξ2, ξ3, z]
⊤(different x than
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in Eq. (4.30)) as,

ξ1 = t̂1 − 0, ξ2 = t̂2 − t̂1, ξ3 = t̂f − t̂2, z = m̂(t̂2),

the last variable is introduced for the simplicity of constraints formulation. The power allocation

problem can now be represented as an optimization problem,

Problem 7. Find four variables x = [ξ1, ξ2, ξ3, z]
⊤ that solves the following problem,

min
x

G := − z − k10ξ3 (4.37a)

s.t. Φ1 := h13ξ
3
1 + h12ξ

2
1 + h11ξ1 + h10 − 1 = 0, (4.37b)

Φ2 := g13ξ
3
3 + g12zξ

2
3 + g11ξ

2
3 + k20ξ3 + k22z

2ξ3 + k23zξ3 + 1− q̂f = 0, (4.37c)

Φ3 := z −
− tan( r0ξ22 ) + f1m0 + f2ξ1 + f3

f1(1 + tan( r0ξ22 )(f1m0 + f2ξ1 + f3))
+

k31
2k32

= 0, (4.37d)

Φ4 := ξ1 + ξ2 + ξ3 = 1. (4.37e)

Appendix A.1 explains in detail how this optimization problem is derived from the original

optimal control problem. Note that the Lagrangian used to deduce second-order sufficient conditions

for Problem 7 is

L := G+ ρ1Φ1 + ρ2Φ2 + ρ3Φ3 + ρ4Φ4. (4.38)

Numerical case study

To examine the power allocation problem for the HEA, the following flight conditions are con-

sidered: yd = 400 km, v = 100 m/s, θ0 = 0.7, m0 = 6350 kg, θf = 0.4; we use Tomlab to solve

Problem 6 and re-scale the results back to their original states. Numerical results are shown in

Fig. 4.15 and Fig. 4.16. The fuel consumed for this example is 310.8 kg. Fig. 4.16 shows that the

optimal control structure follows the optimal control structure in Eq. (4.35).

The corresponding optimization problem is then solved with ipopt in CasADi [104]; the optimal

variables are determined as, [ξ1, ξ2, ξ3, z]
⊤ = [0.1807, 0.6801, 0.1392, 0.3706], and the optimal

objective value is −m̂(1) = −0.3525. Hence, the aircraft’s terminal mass is m = 6039.2 kg and

310.8 kg of fuel is consumed. In this numerical case, the dual variables are also provided by ipopt,
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Figure 4.15: (a) Remaining charge in the battery pack; (b) Total mass of the aircraft.

namely, [ρ1, ρ2, ρ3, ρ4] = [−0.1253,−0.1272, 0.9971,−0.6783]; the first order necessary condition

for optimality is checked, i.e., Lx = 0; moreover, the Hessian Lxx of the Lagrangian for x =

[0.1807, 0.6801, 0.1392, 0.3706] is

Lxx =


−0.0186 −0.0188 0 0

−0.0188 −0.0144 0 0

0 0 −0.0028 0.0211

0 0 0.0211 0.0002,

 (4.39)

and

Φx =


1.6741 0 0 0

0 0 −4.3085 −0.0231

0.8907 0.6803 0 1

1 1 1 0

 , (4.40)

with rankΦx = 4 and Lxx as positive definite. Hence, the second-order sufficient conditions are

satisfied, and the optimal solution is unique and, in fact, globally optimal. With this transition

to the finite-dimensional optimization problem, one can conduct sensitivity analysis on the optimal
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Figure 4.16: (a) Control input; (b) Approximate Specific Fuel Consumption.

solution as well, a technique that proves instrumental to address the question posed at the beginning

of this section.

4.3.3 Comparison of two parallel configurations

The mechanical connection between the engine and the electric motor in the HEA propulsion

system enables the engine to charge the battery pack in flight. During the climb phase, the power

demand is usually greater than the engine’s maximum output power; consequently, the propulsion

system usually operates in the combined mode. The power-split mode is often applicable during

the cruise and descent phases. The fuel consumption during the cruise phase is compared between

charging and not charging the battery. The second potential advantage of charging the battery in

flight is that the electric motor can operate in the OEI mode. Two scenarios–when the battery

pack has sufficient capacity onboard or is fully charged at the beginning of the cruise phase–are

compared.
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To Charge or not in-flight during the cruise phase

First, fuel consumption during the cruise phase is compared between charging and not charging

the battery pack. By solving Problem 6 with the extra constraint ˙̂q ≤ 0, the optimal fuel consump-

tion can be determined when charging the battery pack during the flight is not allowed (only positive

current can flow through the battery pack). In this direction, all other conditions and constraints

are assumed to remain unchanged.
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Figure 4.17: (a) Remaining charge in the battery pack; (b) Approximate Specific Fuel Consumption.

Observing Fig. 4.17, when charging the battery during the flight is not allowed, the optimal power

distribution strategy yields an “engine-alone” then “motor-alone” structure. The total amount of

fuel consumed is 311.08 kg, which is only 0.33 kg more than the case when charging the battery is

allowed in flight. Comparing the first segment of Fig. 4.16b and Fig. 4.17b, it is observed that when

charging the battery on [0, t̂1] in Fig. 4.16b, the SFC is about 0.35 kg/kw/h, which is less than the

case when the battery was not being charged (0.367− 0.369 kg/kw/h) in Fig. 4.17b. However, after

fully charging the battery, the aircraft will again operate in the engine alone mode, where the SFC

is about 0.367− 0.369 kg/kw/h in Fig. 4.16b, the same as when charging is not permissible.

In addition to this numerical example, Monte Carlo studies facilitate generating different flight
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profiles and allow comparing the respective fuel consumption between charging and not charging the

battery pack during flight. As these studies show, the maximum amount of fuel saved by charging

the battery during flight is rather minimal, namely, 0.82 kg.

Charging the battery during flight can improve the efficiency of the engine, but the duration

of this enhanced performance depends on the initial and terminal constraints of the battery pack.

After fully charging the battery, the engine will return to its inefficient operational region. In fact,

overall, the fuel savings by charging the battery to steer the engine to operate more efficiently are

rather negligible.

Figure 4.18: HEA Simulink model

In §3.5, we developed a Simulink Project-based environment to validate the energy management

algorithms for an AEA; in this section, a similar Simulink environment for HEA has been developed,

as shown in Fig. 4.18. A key feature of this simulation environment is its reconfigurability. The new

“Engine system” block contains two types of engines: the ICE (for the SOUL aircraft model) and the

turbine engine. Fig. 4.19 depicts the turbine engine. The optimization approach detailed previously

results in the command signal to the Simulink model, and the corresponding fuel consumption

for the charging and not charging cases is computed. In the Simulink model, fuel consumption

is proportional to the combustor’s input heat signal. For the charging case, the fuel consumed is
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Figure 4.19: Turbine engine.

377.67 kg, whereas, for the not charging case, the fuel consumed is 377.63 kg. The corresponding

time histories for the fuel consumption are shown in Fig. 4.20; the fuel consumption rate between

10 and 60 minutes is slightly different, but the total quantity of fuel consumed is nearly identical.

Increase battery pack capacity onboard

The second potential benefit of charging the battery is that it enables the electric motor to

operate in the OEI mode. To achieve this advantage, the electrical path must contain sufficient

energy to allow the aircraft to land safely at the nearest airport in case of engine failure. Therefore,

the battery pack must have sufficient capacity onboard or be fully charged at the beginning of

the cruise phase. These two scenarios are compared based on the total fuel consumption for the

climb and cruise phases when the corresponding take-off weights are different due to different battery

pack configurations. In the preceding section, it was assumed that the battery pack had two parallel

paths with a total capacity of 400 Ah. Each parallel path in the battery pack has a 200 Ah capacity
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Figure 4.20: Simulink generated time history for the fuel consumption.

and weighs 600 kg. Different battery pack configurations are achieved by adjusting the number of

parallel paths. Adding or removing parallel paths has no effect on the output voltage of the battery

pack; it only increases or decreases the total capacity. First, fuel consumption during the climb

phase with a fixed flight path angle is computed, and the terminal condition for the climb phase is

when the altitude reaches 3000 m.

Table 4.1: Fuel consumption of the climb phase with different battery pack configurations.

Number of parallel paths 1 2 3
Total capacity of the battery pack (Ah) 200 400 600

MTOW (kg) 5785 6385 6985
SOC after climb 0.38 0.69 0.79

Remaining charge (Ah) 76 276 474
Fuel consumed during climbing (kg) 32.84 37.55 42.02

Table. 4.1 shows that when the difference in take-off weight is 1200 kg, the difference in fuel
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consumption is only 10 kg (between one path and three paths). Optimal power allocation solutions

indicate that during the climb phase, the electric motor operates at its maximum output power

while the engine operates in accordance with the power demand.

For the cruise phase, we compare the following cases:

1. case 1: Q = 200 Ah, m0 = 5750 kg, θ0 = 0.4, θf = 1;

2. case 2: Q = 400 Ah, m0 = 6350 kg, θ0 = 0.7, θf = 1;

3. case 3: Q = 400 Ah, m0 = 6350 kg, θ0 = 0.7, θf = 0.5, and the engine cannot charge the

battery;

4. case 4: Q = 600 Ah, m0 = 6950 kg, θ0 = 0.8, θf = 0.67, and the engine cannot charge the

battery.

It is assumed that cases 1 and 2 have the connected architecture; hence, the engine can charge

the battery in-flight. The battery pack should be fully charged after the climb phase to make sure

there is sufficient electrical energy for the aircraft landing safely. Cases 3 and 4 have independent

architectures, and the battery packs have sufficient capacity during the cruise phase. Then the

cruise phase ranging from 150 km to 400 km is swept to compute the fuel consumption for the four

cases listed above. The cruise speed is fixed as 80 m/s for all cases. The simulation result is given

in Fig. 4.21.

It is observed that the fuel consumption is nearly a linear function of the flight distance for each

case (with different slopes). The sensitivity derivative shows that the derivative of the objective

function with respect to the terminal time t̂f is a constant value, but this value changes slightly as

the terminal time changes. For example, in case 2, dG
dt̂f

= 0.6498 when tf = 0.375; dG
dtf

= 0.6363

when t̂f = 1; this value decreases as the final time t̂f increases. In the simulation result, the slope

of the red line in Fig. 4.21 is 0.6433. Reference [105] provides an explicit formula for computing the

sensitivity derivatives, namely,

dxp

dp

dρp

dp

 = −

Lxx Φ∗
x

Φx 0

Lxp

Φp

 , (4.41)
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Figure 4.21: Fuel consumption with different battery configurations; cases 1 and 2 are connected
configurations; cases 3 and 4 are independent configurations.

where xp and ρp are the optimal and dual variables corresponding to parameter p. Then, the

derivative of the objective function G with respect to the parameter tf is computed as

dG

dtf
=
∂G

∂x

∂x

∂tf
. (4.42)

The following observations are obtained when comparing distinct cases with the same terminal

battery charge condition (after charging for the connected case; at beginning of the cruise phase for

the independent case):

1. Comparing case 2 and case 3, it is observed that these two scenarios have the same initial

aircraft mass and battery pack capacity; the only difference is the terminal condition for the

SOC of the battery pack. Case 2 requires the battery to remain in a fully-charged state

(400 Ah) after a short period of the cruise flight; case 3 requires the remaining charge in the

battery pack to be more than 200 Ah. Simulation results show that case 2 needs about 30 kg
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more fuel consumed than case 3 for all flight ranges.

2. Comparing case 1 and case 3 (the blue line and the green line), the remaining charge in the

battery pack is 200 Ah for both cases. Even though case 1 has a lighter initial aircraft mass,

charging the battery to its fully-charged state requires more fuel; carrying more battery packs

can save fuel under this remaining charge condition.

3. Comparing case 2 and case 4, same as the comparison between case 1 and case 3; the remaining

charge in the battery pack is 400 Ah for both cases. Increase the battery capacity onborad

can still save fuel.

Hence, with the same remaining battery charge requirement, increasing the battery capacity

onboard is more favorable than charging the battery in-flight in terms of fuel saving and CO2

emissions.

Similarly, the sensitivity derivative of the objective function with respect to the initial weight

can be computed as,
dG

dm0
=
∂G

∂x

∂x

∂m0
. (4.43)

The corresponding value turns out to be minimal for the proposed aircraft. For example, dG
dm0

=

0.0216 at m0 = 6350 kg when the flight conditions are set as yd = 400 km, v = 80 m/s, θ0 = 0.7,

θf = 0.4; as the initial weight increases (the battery capacity remain constant as 400 Ah), dG
dm0

increases slightly, dG
dm0

= 0.0222 at m0 = 6540 kg. The fuel consumption only increases by 4.38 kg

when the initial weight increases from 6350 kg to 6550 kg. Then flight profiles from the previous

section (Monte Carlo) are simulated, and the maximum fuel consumption difference is 6.61 kg

between initial weight 6350 kg and 6550 kg. As such, the fuel consumption during the cruise phase

is rather insensitive to the initial weight.



88

Chapter 5

VERTIPORT SELECTION AND TASK ASSIGNMENT FOR UAM

The development of Urban Air Mobility (UAM) encompasses a wide range of research domains,

spanning aircraft technology, infrastructure construction, autonomous operations, regulatory con-

siderations, public acceptance, and more. Within the framework of this dissertation, Chapters 3

and 4 primarily focus on electrically propelled fixed-wing aircraft, which are particularly well-suited

for Regional Air Mobility (RAM) operations. Simultaneously, significant ongoing advancements

are occurring in the area of electric Vertical Takeoff and Landing (eVTOL) aircraft and related

technologies.

Numerous companies and startups, including established aerospace manufacturers, are actively

engaged in the research and development of eVTOL. Some notable examples include companies like

Ehang, Joby Aviation, Volocopter, Lilium, Airbus, Boeing, and many others. For example, Ehang’s

unmanned aerial vehicle, EH216-S, has completed all of its planned tests and flights and was certified

by the Civil Aviation Administration of China in August 2023. Joby Aviation has received a Special

Airworthiness Certificate from the FAA for the first aircraft built at its Pilot Production Line in

Marina, California.

In addition, a number of UAM industries, including Ferrovial, Urban-Air Port Ltd., and Sky-

ports, are actively investigating the possibility of ultra-compact, rapidly deployable, multifunctional

vertiports for both manned and unmanned aircraft around the world. An illustrative embodiment

of this endeavor is the Air-One vertiport, an innovation designed and realized by Urban-Air Port

in Coventry, UK. Anticipated to be operational in 2025, Air-One represents a pioneering initiative

intended to offer comprehensive services for eVTOLs and drones.

Furthermore, to enable the successful deployment of AAM systems, pivotal regulatory entities

such as the FAA in the United States and the European Union Aviation Safety Agency (EASA)

in Europe are working closely with industry stakeholders. Their collaboration addresses critical

aspects such as safety, certification, airspace integration, and infrastructure requirements, shaping
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the frameworks and standards for AAM operations.

Within this landscape of research opportunities and challenges, this dissertation focused on two

topics specifically: the optimal selection of vertiports to enhance overall traffic performance in a city

and the task allocation and route design for eVTOLs to maximize airline profits. These investigations

contribute valuable insights to the growing field of UAM and can help inform decision-making in

future UAM implementations.

This chapter is organized as follows. Related works for the vertiport selection problem, fun-

damental network concepts, and traffic equilibria are introduced in §5.1. The mixed-integer linear

program is formulated in §5.2, along with a numerical example in the city of Anaheim. §5.3 pro-

vides related works for task assignment problems. §5.4 presents the task network formulation, the

mixed-integer program for identifying multiple paths, and a numerical example of assigning tasks

to multiple vehicles.

5.1 Related works for vertiport selection and traffic equilibria

5.1.1 Related work

Transportation network design involves the optimal modification of an existing ground trans-

portation network [106, 107]. These modifications encompass expanding the capacity of existing

links or introducing new links to the network. The quality of the modifications is assessed based

on factors such as traveler congestion in the modified network and the costs associated with the

modifications.

The input of the problem includes, a) The existing transportation network topology, b) Travel

demand between each origin-destination pair for a specific time interval, c) Road characteristics,

such as flow capacity and free travel time, d) A set of candidate options for modifications and their

cost, e) The overall budget for modifications. The outcome of the problem is a set of modifications

that satisfies the budget constraint and minimizes the congestion of travelers. [108] provides a

survey on recent transportation network design.

One crucial aspect in the design of the transportation network involves the prediction of the

collective behavior of selfish travelers in congested transportation networks [109]. Two distinct

prediction models have been used in the literature. The first model, referred to as the Beckmann
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model [110], involves the minimization of a convex polynomial function subject to linear constraints.

The second model, known as the Nesterov & de Palma model [111, 112], entails the minimization

of a linear function subject to linear constraints. When combined with the Bureau of Public Roads

function for link delays, the Beckmann model provides prediction results similar to the Nesterov

& de Palma model in terms of user distribution, the price of anarchy, and the Braess paradox

phenomenon. We refer interested readers to [113] for a detailed numerical comparison of the two

models.

The Nesterov & de Palma model exhibits superior computational efficiency compared to the

Beckmann model. The reason is that a network design problem requires not only the prediction of

traffic patterns but also the optimization of the predicted traffic patterns by designing the network

parameters. The former task just involves the resolution of a convex optimization problem, while

the latter presents a nonconvex optimization problem that encompasses the Karush–Kuhn–Tucker

(KKT) conditions of a convex optimization problem [107]. Due to the polynomial objective func-

tion, the KKT conditions—in particular, the vanishing gradient condition—of the Beckmann model

include polynomial equalities [107]. On the other hand, the KKT conditions in the Nesterov & de

Palma model include only linear equalities and inequalities [114]. As a result, using the Nesterov &

de Palma model, the network design optimization is equivalent to a mixed integer linear program

(MILP) [114, 115, 116]. In contrast, using the Beckmann model, solving a MILP—or equivalently,

a linear-linear bilevel optimization problem—only provides a local descent direction, not a globally

optimal solution, for the network design optimization [117].

5.1.2 Hybrid ground-air transportation networks formulation

We introduce some fundamental network concepts, including nodes, links, incidence matrices,

link and node capacities, and travel time.

Nodes and links

Let N = {1, 2, . . . , nn} represent the set of nodes in the ground transportation network. Among

all these nodes, V = {v(1), v(2), . . . , v(nv)} comprises the nodes that contain a candidate vertiport

location, where v(i) ∈ N for all i = 1, 2, . . . , nv. Let L = {1, 2, . . . , nl} denote the set of links. Each
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link is an ordered pair of distinct nodes, where the first and second nodes are referred to as the

“tail" and “head" of the link, respectively.

Furthermore, ng ≤ nl denotes the number of ground links, and na := nl−ng denotes the number

of air links. A ground link k = (i, j) with 1 ≤ k ≤ ng indicates that any ground travelers can travel

from node i to node j, and an air link k = (i, j) with ng + 1 ≤ k ≤ nl means any aircraft can fly

from node i to node j.

Incidence matrices

The topology of the hybrid ground-air network is represented by the node-edge incidence matrix,

denoted as E ∈ Rnn×nl . The entry [E]ik in matrix E corresponds to the relationship between node

i and link k is defined as follows:

[E]ik =


1, if node i is the tail of link k,

−1, if node i is the head of link k,

0, otherwise.

(5.1)

Note that [E]ik ̸= 0 for some ng + 1 ≤ k ≤ nl only if i ∈ V.

The topology of the vertiports and air links is represented by the following unsigned incidence

matrix D ∈ Rnv×nl for air links. The entry [D]ik is associated with node i and link k as follows

[D]ik =


1, if k ≥ ng + 1 and [E]v(i),k ̸= 0,

0, otherwise.
(5.2)

Demand matrix

We distinguish different travelers in the network using their destinations, denoted by a subset

of nodes {s(1), s(2), . . . , s(nd)} ⊂ N . These nodes represent the various destination points in the

hybrid network. A demand matrix S ∈ Rnn×nd is introduced to represent the traffic demand, which

represents the number of trips per unit between different origin and destination nodes. The matrix

S is defined as follows: for any i ∈ N with i ̸= s(j), the entry [S]ij in matrix S denotes the traffic

demand from node i to node s(j), i.e., the number of travelers leaving node i heading towards node
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s(j) per unit time. If [S]ij > 0, then (i, s(j)) is also known as an origin-destination pair. To ensure

that the total flow is conserved, [S]s(j),j = −
∑

i,i ̸=s(j)[S]ij for all j = 1, 2, . . . , nd is defined such that

the sum of each column in matrix S equals zero, enabling convenient definition of flow conservation

constraints in matrix form.

Flow matrix

At a static traffic equilibrium, the number of travelers entering and exiting the same link is

balanced. The number of travelers on different links per unit of time is represented by the flow

matrix X ∈ Rnl×nd . Specifically, the entry [X]kj in matrix X denotes the amount of travelers

exiting link k while heading towards destination node s(j) per unit time.

Flow conservation

By construction, the demand matrix S, flow matrix X, and incidence matrices E together satisfy

the following flow conservation constraint:

EX = S, X ≥ 0. (5.3)

Note that the above constraints implicitly imply that the sum of each column in matrix S equals

zero. This observation justifies the definition of the negative entries in matrix S.

Example 1. Consider the example network in Fig. 5.1, where black and blue arcs denote ground

and air links, respectively. The blue nodes contain candidate locations for vertiports. In this case,

we have N = {1, 2, 3, 4}, V = {2, 3}, L = {1, 2, 3, 4, 5, 6}, and matrices E and D are as follows

E =


1 1 0 0 0 0

−1 0 1 0 1 −1

0 −1 0 1 −1 1

0 0 −1 −1 0 0

 , D =

0 0 0 0 1 1

0 0 0 0 1 1

 .

Furthermore, a possible choice of demand matrix S and flow matrix X that satisfy the constraints
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in Eq.(5.3), are as follows:

S =

 5 −5 0 0

10 0 0 −10

⊤

, X =

5 0 0 0 0 0

3 7 7 3 0 4

⊤

.

1

2

3

4
1

2

3

4

5 6

Figure 5.1: An example of a hybrid ground-air transportation network

Capacity and free travel time

The link capacity of a ground or air link represents the maximum amount of travelers that can

exist on the link per unit of time. For ground links, this capacity depends on the number of lanes

and cycle time of traffic signals; for air links, the capacity depends on the available airspace and the

maximum allowed aircraft density of each flight leg. We denote the link capacity of all the air and

ground links using the link capacity vector f ∈ Rnl
+ , where its entry [f ]k denotes the capacity of link

k.

The free travel time of a ground or air link represents the time consumed by each traveler to

traverse the link when no traffic congestion is present. We denote the free travel time of all links

using a vector c ∈ Rnl , where the k-th entry denotes the free travel time on link k.

The Nesterov & de Palma model [111, 112] establishes a coupling between the link capacity,

the free travel time, and the flow matrix as follows: First, the traffic flow on each link should never

exceed its capacity, i.e.,
nd∑
j=1

[X]kj ≤ [f ]k, ∀k ∈ L (5.4)

Second, the travel time on a link is determined based on its flow relative to its capacity. If the

traffic flow on a link is below its capacity, then the travel time of this link remains equal to the

corresponding free travel time. If the traffic flow on a link equals its capacity, then the average

travel time of this link is lower bounded by the corresponding free travel time. In other words, if
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vector c̃ ∈ Rnl is such that [c̃]k denotes the travel time on link k, then the following conditions hold

for all k ∈ L:

nd∑
j=1

[X]kj < [f ]k ⇒ [c̃]k = [c]k, (5.5a)

nd∑
j=1

[X]kj = [f ]k ⇒ [c̃]k ≥ [c]k. (5.5b)

In addition to the link capacity, we also consider the additional capacity of vertiports in the

hybrid ground-air transportation network. Each vertiport has a limited number of touch-down and

lift-off pads, which restricts the maximum amount of take-off and landing operations per unit of

time. Similar to those in the Nesterov & de Palma model, we make the following assumptions.

First, the total air traffic entering and exiting a vertiport should never exceed its capacity, i.e.,

nl∑
k=1

nd∑
j=1

[D]ik[X]kj ≤ [g]i, ∀i = 1, 2, . . . , nv. (5.6)

Second, the delay at a vertiport depends on the flow relative to its capacity. If the traffic flow

on a vertiport is below its capacity, then the delay at this vertiport is zero; if the traffic flow on

a vertiport reaches its capacity, then the average flight delay at this vertiport is nonnegative. In

other words, if vector ẽ ∈ Rnv is such that [ẽ]i denote the average flight delay at vertiport i, then

the following condition holds for all i = 1, 2, . . . , nv:

nl∑
k=1

nd∑
j=1

[D]ik[X]kj < [g]i ⇒ [ẽ]i = 0, (5.7a)

nl∑
k=1

nd∑
j=1

[D]ik[X]kj = [g]i ⇒ [ẽ]i ≥ 0. (5.7b)

In practice, link and node capacities are defined in terms of the number of ground or air vehicles

rather than the number of travelers or passengers in the vehicles. Hence, the value of the link and

node capacities above often depends on the average number of passengers per ground vehicle and

air vehicle. The latter increases, for example, with the capacity of the vehicle and the average level

of ridesharing.
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Remark 2. Several studies in the literature have considered the link capacity constraints (Eq.(5.4))

in ground transportation network models [118], including the Beckmann model [119] and the Nes-

terov & de Palma model [111, 112]. We refer interested readers to [113] for a detailed numerical

comparison of the effects of these constraints in different transportation models.

5.1.3 Traffic equilibria with node and link capacities

The concept of static equilibrium matrix is introduced for subsequent mathematical model for-

mulation.

Definition 1. Matrix X ∈ Rnl×nv is a static equilibrium matrix defined by the tuple {S,E,D, c, f, g}

if it optimizes the following linear program,

min
X

c⊤X1d

s.t EX = S, X ≥ 0,

X1d ≤ f, DX1d ≤ g.

(5.8)

Remark 3. Optimization (5.8) augments the multicommodity min-cost flow problem [120, Chp.

4] with additional node capacity constraints. The main difference between optimization (5.8) and

previous work on the Nesterov & de Palma model for ground traffic [111, 112] is that optimization

(5.8) contains the vertiport capacity constraints in Eq.(5.6), which, unlike the link capacity well-

studied in the literature, are defined on the nodes of the network rather than the links.

The linear program in Definition 1 is our prediction model for the traffic patterns–including flow

and travel cost–of a hybrid ground-air transportation network. The following proposition provides

two equivalent characterizations of static equilibrium matrix based on the optimality condition of

linear programs.

Proposition 1. Matrix X ∈ Rnl×nv is a static equilibrium matrix associated with the tuple {S,E,D, c, f, g}

if and only if there exists V ∈ Rnn×nd , U ∈ Rnl×nd , p ∈ Rnl , and q ∈ Rnv such that the following

two conditions hold simultaneously:
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1. The following constraints are satisfied:

EX = S, X1d ≤ f, DX1d ≤ g, (5.9a)

(c+ p+D⊤q)1⊤d = E⊤V + U, (5.9b)

X ≥ 0, U ≥ 0, p ≥ 0, q ≥ 0. (5.9c)

2. One of the following two sets of constraints are satisfied:

either
tr(X⊤U) = 0, p⊤X1d = f⊤p,

q⊤DX1d = g⊤q,
(5.10)

or

c⊤X1d + f⊤p+ g⊤q = tr(V ⊤S). (5.11)

Proof. See Appendix B.1

The conditions in Eq.(5.10) and Eq.(5.11) are also known as the complementary slackness con-

dition and the zero-duality-gap condition. For linear programs, these two conditions are equivalent

[121, Thm. 1.3.3]. Both conditions will be used to define and simplify the mathematical program

with equilibrium constraints for vertiport selection.

Let c̃ = c+p and ẽ = q. One can verify that the conditions in Eqs.(5.9a, 5.9c, and 5.10) together

imply the constraints in Eq.(5.3, 5.4, 5.6, 5.5, and 5.7). Hence, the equilibria model in Definition 1

satisfies the second and the third assumptions we introduced at the beginning of this section.

Furthermore, the conditions in Proposition 1 also imply that only routes with the minimum

accumulated travel time are used, a property known as the Wardrop equilibrium principle [122].

To see this implication, we define the set of route vectors from node i to destination node s(j) as

follows:

P(i, s(j)) =

u ∈ {0, 1}nl

∣∣∣∣∣∣∣
[Eu]i = 1, [Eu]s(j) = −1,

[Eu]k = 0,∀k ̸= i, s(j).

 . (5.12)

Intuitively, each vector u in set P(i, s(j)) defines a sequence of links connecting node i and node

s(j) in a head-to-tail fashion; link k is on the route defined by u if and only if [u]k = 1. Note that
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the set P(i, s(j)) is not necessarily a singleton since there can be multiple routes–routes composed

of ground links, air links, or a combination of both–between each origin-destination pairs.

Based on the above definition, the following corollary shows that any tuple {X,U, V, p, q} sat-

isfying the conditions in Proposition 1 implies that any used routes have the lowest accumulated

travel time, where the travel time of link k is given by [c+ p+Dq]k.

Corollary 1. Let {X,U, V, p, q} satisfy the conditions in (5.9) and Eq.(5.10), and c := c+ p+Dq.

Let i ∈ {1, 2, . . . , nn} and j ∈ {1, 2, . . . , nd} such that i ̸= s(j) and [S]i,s(j) > 0. If u⋆ ∈ P(i, s(j))

and [X]kj > 0 for all k such that [u⋆]k = 1, then the following condition holds for all u ∈ P(i, s(j)):

c⊤u⋆ ≤ c⊤u. (5.13)

Corollary 1 shows that the equilibria model in Definition 1 also satisfies the first assumption we

introduced at the beginning of this section: any routes with positive traffic flow have the lowest

accumulated time of travel.

Alternatively, one can predict the traffic equilibria using an extension of the Beckmann model

rather than an extension of the Nesterov & de Palma model [119]. However, the Beckmann model

results in a set of equilibrium conditions with more nonlinear equality constraints than those in

Nesterov & de Palma model [106, 107]: the equilibrium conditions in the Beckmann model are the

KKT conditions of a nonlinear convex optimization, which contain nonlinear constraints; in contrast,

the equilibrium conditions in the Nesterov & de Palma model, as we showed in Proposition 1, only

contain linear constraints. On the other hand, studies have shown that the Nesterov & de Palma

model and the Beckmann model give similar prediction results [113]. Therefore, we chose the

Nesterov & de Palma model as the basis of our equilibria model.

5.2 Groud-Air hybrid transportation network design

In this section, we first formulate the vertiport selection problem as a mixed integer linear

program, then we implement this approach to an actual city’s transportation network.
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5.2.1 Mixed-integer linear programming

We first introduce a mathematical model that selects the location and capacity of vertiports in

a hybrid ground-air transportation network to optimize the resulting traffic equilibria. In particu-

lar, we aim to modify the optimal solution of the linear program (5.8) by choosing the entries in

the vertiport-capacity vector g among discrete values–including zero values, in which case the corre-

sponding vertiport location is discarded. The following assumption is made for linear program (5.8).

Assumption 6. Linear program (5.8) is feasible and has a bounded optimal value.

Assumption 6 implies that link capacity and vertiport capacity in the hybrid air-ground trans-

portation network are large enough to accommodate the traffic demand, i.e., the flow conservation

constraints in (5.3) and capacity constraints in Eq.(5.4) and Eq.(5.6) hold simultaneously. Based

on this assumption, we define the objective function and a mathematical program with equilibrium

constraints (MPEC) for vertiport selection problem.

MPEC key components

We first introduce key components to define the MPEC, such as the design variables, the objective

function, and the constraints.

The following assumption is made for the vertiport capacity vector g.

Assumption 7. There exists G ∈ Rnv×nc
+ such that the vertiport capacity vector g in Definition 1

satisfies the following constraints:

[g]i ∈ {0, [G]i1, [G]i2, . . . , [G]i,nc},

where [G]i1 < [G]i2 < · · · < [G]i,nc for all i = 1, 2, . . . , nv.

Assumption 7 states that the capacity of the i-th vertiport is selected from an increasing sequence

{0, [G]i1, [G]i2, . . . , [G]i,nc}. For example, if nc = 3, then the capacity of the i-th vertiport can be

zero–in this case, this vertiport is discarded–or a small, medium, or large value, denoted by [G]i1,

[G]i2, and [G]i3, respectively.
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Based on Assumption 7, the selection matrix is defined as follows. Let B ∈ Rnv×nc be a binary

matrix such that [g]i = [G]ij if and only if [B]ij = 1. Then Assumption 7 holds if and only if

g = (B ⊙G)1c, B1c ≤ 1v, B ∈ {0, 1}nv×nc . (5.14)

In other words, each choice of B that satisfies the constraints in (5.14) corresponds to a value of

capacity vector g that satisfies Assumption 7. The binary matrix B is used as a design variable in

the vertiport selection problem.

With the design variable B and Assumptions 6 and 7, the objective function for the vertiport

selection problem can be defined as follows. Given a set of vertiport with corresponding capacity,

we first introduce a quantitative measure for the quality of the traffic equilibria. To this end, given

a selected capacity vector g, let {X,U, V, p, q} be a tuple that satisfies the equilibrium conditions in

Proposition 1. The quality of this tuple is evaluated by the following network loading function:

ℓ(X, p, q) := (c+ p+D⊤q)⊤X1d =

nl∑
k=1

[c+ p+D⊤q]k︸ ︷︷ ︸
ck

[X1d]k︸ ︷︷ ︸
xk

. (5.15)

Here the value of ck is the travel time on link k at the equilibrium: it is the sum of the free travel time

[c]k and the extra time delay caused by the congestion on the link and nodes, given by [p+D⊤q]k.

The value of xk is the total amount of travelers entering or exiting link k per unit time1.

Assumption 7 states that the location and capacity of the vertiports depend on a binary selection

matrix B: if
∑nc

j=1[B]ij = 0, then vertiport i is not selected; if [B]ij = 1, then vertiport i is selected

with capacity [G]ij at the cost of [K]ij . In addition, the capacity selection for all the vertiports is

subject to a budget constraint defined by parameter γ.

Now we analyze the constraints for the selection problem. The first set of constraints is given in

Eqs.(5.9, 5.10) (or Eq.(5.11)) and Eq.(5.14). Together these constraints define the coupling relation

among the selection matrix B, the capacity vector g, and the static traffic equilibria that correspond

to the tuple {X,U, V, p, q}.

In addition, we also consider the following budget and logical constraints on the selection matrix

B. First, constructing and maintaining a vertiport comes at a cost–which typically increases with

1At a static equilibrium, the number of travelers entering and exiting the same link are the same; see [112].
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the vertiport capacity. To impose a budget constraint in the vertiport selection problem, a cost

matrix K ∈ Rnv×nc is introduced, and its entry [K]ij is the cost of selecting capacity [G]ij for the

i-th vertiport. γ ∈ R denotes the upper bound on the total cost of vertiport selection, then a budget

constraint takes the following form:

1⊤v (K ⊙B)1c ≤ γ. (5.16)

Second, the choice of vertiport location is often subject to additional logical constraints: for ex-

ample, two locations close to each other cannot be selected simultaneously due to noise management

regulations, and some locations must be selected as an air traffic hub. To account for these logical

constraints, we consider the following linear constraints on the selection matrix B

A vec(B) ≤ b, (5.17)

where vec : Rnv×nc → Rnvnc is a vectorization map such that [vec(B)](i−1)nv+j = Bij for all

i = 1, 2, . . . , nv and j = 1, 2, . . . , nc, A ∈ Rnb×(nvnc) and h ∈ Rnb defines all the logical constraints

on matrix B.

Example 2. To illustrate the logical constraints on vertiport location, we consider the case with two

candidate vertiport locations, and each vertiport has two candidate capacity value, i.e., nv = nc = 2.

In this case, If we let

A =

 1 1 1 1

−1 −1 −1 −1

 , b =
 1

−1

 , (5.18)

then the constraint in (5.17) implies that one and only one of the two candidate vertiport location

can be selected, i.e.,

[B]11 + [B]12 + [B]21 + [B]22 = 1. (5.19)

The MPEC formulation

We now introduce the mathematical program that selects the value of capacity vector g. The

idea is to optimally choose the value of vector g such that the resulting equilibrium minimizes a

weighted sum of the network loading function in Eq.(5.15) and the selection cost defined in the left

hand side of Eq.(5.16).
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Problem 8. Find g such that the following problem is solved,

minimize
g,B,p,q,
X,U,V

(c+ p+D⊤q)⊤X1d + ω1⊤v (K ⊙B)1c

subject to EX = S, X1d ≤ f, DX1d ≤ g,

(c+ p+D⊤q)1⊤d = E⊤V + U

X ≥ 0, U ≥ 0, p ≥ 0, q ≥ 0,

c⊤X1d + f⊤p+ g⊤q = tr(V ⊤S),

g = (G⊙B)1c, B1c ≤ 1v,

1⊤v (K ⊙B)1c ≤ γ, A vec(B) ≤ b,

B ∈ {0, 1}nv×nc ,

(5.20)

where ω ∈ R+ is a weighting parameter.

Problem 8 is a mathematical program with equilibrium constraints (MPEC): it includes the equi-

librium conditions in Eq.(5.9) and Eq.(5.11) as part of its constraints. Proposition 1 shows that

these constraints–which jointly depend on the primal and dual variables for linear program (5.8)–

together ensure that matrix X is a static equilibrium matrix in the sense of Definition 1; similar

constraints are common in MPEC, see [123, Sec. 7.1]. According to Proposition 2, one can alterna-

tively replace the duality gap constraint in Problem 8–which was first introduced in Eq.(5.11)–with

the complementarity constraints in Eq.(5.10). However, such replacement introduces even more

bilinear functions of the unknowns. Hence we choose to write optimization in its current form; a

similar MPEC was also used in electrified ground network design [114].

A globally optimal solution of Problem 8 is challenging to compute since its objective function

and constraints contains bilinear functions of unknowns, such as p⊤X1d and g⊤q.

We now show that the MPEC in Problem 8, a bilinear mixed integer optimization problem,

is equivalent to a MILP. As a result, one can compute a global optimal solution of optimization

Problem 8 using off-the-shelf optimization software, such as GUROBI [124].

The first step is to apply the following proposition to replace the bilinear constraints in Problem

8 with a linear one.
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Proposition 2. Let G ∈ Rnv×nc
++ . There exists a large enough µ ∈ R++ such that the following two

sets of conditions are equivalent.

1. There exists δ ∈ R, q ∈ Rnv , B ∈ {0, 1}nv×nc and g ∈ Rnv such that

δ = g⊤q, g = (G⊙B)1c, B1c ≤ 1v, q ≥ 0. (5.21)

2. There exists δ ∈ R, q ∈ Rnv , B ∈ {0, 1}nv×nc and Y ∈ Rnv×nc , such that

δ = 1⊤v Y 1c, 0 ≤ Y ≤ µB, B1c ≤ 1v,

0 ≤ G⊙ (q1⊤c )− Y ≤ µ(1v1⊤c −B), q ≥ 0.
(5.22)

Proof. See Appendix B.3.

Proposition 2 allows us to replace the bilinear function g⊤q, appearing in the constraints of

Proposition 2, with a linear function of an auxiliary matrix Y .

Our next step is to show the bilinear objective function of optimization Problem 8 is also equiv-

alent to a linear one. To this end, by using Proposition 1 again we can show the following:

p⊤X1d = f⊤p, q⊤DX1d = g⊤q.

Next, using Proposition 2, we can further replace the inner product q⊤g with a linear function of

the auxiliary matrix Y . By combining these results together, we can replace the bilinear objective

function in Problem 8 with a linear one.

Equipped with these results, we can reformulate Problem 8 as the following equivalent MILP.
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Problem 9. Find B, Y , and tuple {X,U, V, p, q} such that the following problem is solved,

minimize
B,p,q,Y,
X,U,V

c⊤X1d + f⊤p+ 1⊤v Y 1c + ω1⊤v (K ⊙B)1c

subject to EX = S, X1d ≤ f, DX1d ≤ (G⊙B)1c,

(c+ p+D⊤q)1⊤d = E⊤V + U

X ≥ 0, U ≥ 0, p ≥ 0, q ≥ 0,

c⊤X1d + f⊤p+ 1⊤v Y 1c = tr(V ⊤S),

0 ≤ G⊙ (q1⊤c )− Y ≤ µ(1v1⊤m −B),

B1c ≤ 1v, 1⊤v (K ⊙B)1c ≤ γ,

0 ≤ Y ≤ µB, A vec(B) ≤ b,

B ∈ {0, 1}nv×nc ,

(5.23)

where µ is a large enough positive scalar

Problem 9 is a MILP: its objective function and constraints only depend on linear functions of

the unknowns, and it contains a binary unknown matrix B. One can solve such MILP and obtain

a globally optimal solution using off-the-shelf optimization software.

One challenge in solving Problem 9 is to choose an appropriate value for the scalar parameter

µ. For the equivalence in Proposition 2 to hold, one must choose µ to be large enough such that µ

upper bounds each element in matrix G⊗(q1⊤c ) and matrix Y . On the other hand, choosing µ to be

too large can cause slow convergence and memory error when solving Problem 9. This phenomenon

is well-known in the mixed integer programming literature. For the guidelines on diagnosing and

preventing large values of parameter µ, we refer the interested readers to [125, Sec. 3.4].

In practice, one can choose an appropriate value for µ by letting µ = qmaxi[G]i,nc , where q ∈ R+

is an estimate of the maximum delay among all vertiports at equilibrium. One can empirically

estimate the magnitude of q using the magnitude of free travel time c. In our numerical experiments,

we find that letting q be one order of magnitudes higher than the value of c⊤1nl
usually gives a

valid estimate. On the other hand, if µ is too small or too large, the MILP in (5.23) will become

infeasible or ill-conditioned, and numerical MILP solvers will fail to provide a solution.
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5.2.2 Numerical results

We demonstrate our algorithm using the Anaheim ground transportation network model de-

veloped in [126], which contains more than 400 nodes and 900 links. Our goal is to numerically

demonstrate the effects of adding different vertiports to an existing ground transportation network

in terms of traffic loading in the network.

The Anaheim ground transportation network model consists of a well-defined arterial grid system

integrated with an extensive freeway system. See Fig. 5.2 for an illustration. 2 The model includes

the data for 1) the incidence matrix, 2) the demand matrix, 3) the free travel time, and 4) the

link capacity. Based on these data, we construct the Nesterov & de Palma model for the ground

transportation network, which is known to produce similar results as the Beckmann model [113].

Figure 5.2: The Anaheim network where the candidate vertiport locations are marked with colored
circles.

In addition to the Anaheim ground transportation network, we construct an air transportation

2The map images we used are generated by Mapbox. https://www.mapbox.com

https://www.mapbox.com
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network as follows. Based on their location and travel demands, we choose nine different destination

nodes in the Anaheim network as candidate locations for vertiports; see Fig. 5.2 for an illustration.

The capacity of each vertiport can be either 600 or 1200 takeoffs and landings per hour; choosing

these capacities will take 1 or 2 units of cost. We add an air link to each pair of vertiports if their

physical distance is greater than the median of the pairwise distance of all the nodes in the Anaheim

network. The free travel time of these air links is set to be proportional to the corresponding distance,

and the flow capacity is fixed to be 80 flights per hour for all air links.

We also consider the following budget and logical constraints on the vertiport locations. First,

the total selection budget γ is chosen such that γ ∈ [5, 11]. Second, the locations marked in Fig. 5.2

are subject to the logical constraints listed in Tab. 5.1.

Table 5.1: Logical constraints for vertiport locations marked in Fig. 5.2

Marker color Constraints on the corresponding locations
red both are selected

magenta at least one is selected
yellow one and only one is selected
green one and only one is selected

With the above choices of parameters, we solve Problem 9. To demonstrate our results, we define

the following notion of link loading for each link k = 1, 2, . . . , nl:

ℓk(X, p, q) = [c+ p+D⊤q]k[X1d]k. (5.24)

Intuitively, ℓk denotes the number of vehicles traveling on link k at the equilibrium–which is also

the summand in the total link loading defined in (5.15).

Fig. 5.3 shows the link loading in the ground and air networks when we let choose the budget

to be γ = 8. The shape of the marker indicates the capacity of the corresponding vertiport: the

square marker denotes the capacity value of 600, which costs one unit in the budget; the triangle

marker denotes the capacity value of 1200, which costs 2 units in the budget. In this case, a total

of six vertiports are selected, and only two of them have the larger capacity value of 1200: the one

near Westminster and the one near Villa Park; the latter fact is consistent with the air link loading
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distribution in Fig. 5.3: the vertiports near Westminster and Villa Park are connecting some of the

flight legs with the highest loading; hence they necessarily need larger capacity.

Figure 5.3: The optimal air and ground traffic network loading when vertiport selection budget
γ = 8.

5.3 Related works for task assignment problem

As previously mentioned, UAM is still in its early stages of development, and our understanding

of this field is rather limited. Regarding the task assignment problem within the context of UAM,

numerous critical questions need to be addressed to obtain a comprehensive understanding. These

questions span various aspects, including the requisite number of vehicles to meet daily air travel

demands, the optimal approach to the management battery packs in eVTOL aircraft (i .e., whether

to charge or replace the battery during daily operations), the impact of battery charging duration

on overall profits, the ideal cruise speed of eVTOL aircraft for optimal profitability, the influence of

task waiting times, etc.. Addressing these questions provides valuable insights into the operational

efficiency and profitability of the UAM system.

Multi-robot task allocation has been a popular topic in the robotics community for decades [127,

128]; some commonly used strategies include mixed-integer linear programming [129, 130], Hungar-

ian methods [131, 132], greedy algorithms [133], auction algorithms [134, 135], game theory [136],

and more. With the increasing demands and the scale of the problem, a recent trend for this type

of problem is to solve it in real time and in a distributed manner.
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However, our approach focuses on designing a centralized and offline algorithm to address some

of the questions mentioned above. In this chapter, we will assign a sequence of tasks to each vehicle

within a specified time duration, such as a day, with the purpose of maximizing the overall profits of

completing these tasks. We formulate tasks as a directed graph and transform the task assignment

problem into identifying multiple non-intersecting paths that maximize the overall profits while

satisfying time and battery charge constraints.

The literature most closely related to our research is the line of work on the team orienteering

problem with time window (TOPTW) [137]. The orienteering problem (OP) is also known as the

selective traveling salesman problem (TSP); the TSP is to minimize the travel time while the OP

involves maximizing the total score collected. Furthermore, It is not required to visit all nodes in

the network for OPs. TOPTW is an OP where the purpose is to identify multiple paths, with each

node having specific time window constraints that necessitate the node to be visited only during

the specified time window. TOPTW essentially is the same as elementary shortest path problem

with resource constraints (ESPPRC). Both OP and TOPTW are typically modeled using graph

representation and formulated as a mixed-integer program. In these formulations, integer variables

are used to make decisions regarding which nodes or edges should be included in the optimal solution.

Both problems are known to be NP-hard.

The common strategies for solving OP and TOP are classified as exact and heuristic algorithms.

Exact methods include solving a mixed-integer program by branch-and-cut procedure [138, 139],

dynamic programming (DP) [140, 141], etc. Heuristics methods include ant colony system [142, 143],

tabu search [144, 145], guided local search [146], etc.

Our algorithm first addresses the single path identification problem by utilizing DP. Feillet

et al. [141] proposed an exact solution procedure for ESPPRC. The algorithm is adapted from

Desrochers’ label correcting algorithm [147] and is able to deal with graphs containing negative

cost cycles. The efficiency of the algorithm is numerically demonstrated. Righini and Salani [140]

presented and compared three DP-based algorithms for ESPPRC: exact DP, branch-and-bound

based on state-space relaxation, and decremental state-space relaxation. The DP-based labeling

algorithm by Feillet is modified and implemented in our algorithm.

Subsequently, we solve the multiple paths identification using a greedy algorithm. Greedy al-

gorithms are often used to solve task assignment problems whose objective function is submod-
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ular [148, 149, 150, 151]. Guannan et al. [133] proposed a distributed greedy algorithm for the

multi-agent task assignment problem. Only local information and local communication are needed

for each agent to select its task. The sub-optimality of the proposed algorithm was proved, and a

refined efficiency ratio bound was provided. Xu et al. [152, 153] proposed a greedy algorithm for a

TOP with a ratio of 1− (1/e)
1

2+ϵ where ϵ is a given constant. They considered different scenarios,

such as extra node costs and different vehicle types, and adjusted the proposed algorithm for these

scenarios.

5.4 Task assignment and vehicle routing for UAM

This section introduces a novel task assignment and vehicle routing algorithm for UAM. In

addition to the geographic air network where eVTOLs operate, a task network is constructed for

the assignment algorithm. By employing this formulation, the task assignment problem for UAM

is transformed into finding multiple non-intersecting paths that maximize profits.

5.4.1 Task network formulation

Suppose that in a metropolitan city with a number of vertiports and predetermined daily travel

demands, an airline company operates a fleet of eVTOLs to meet these demands. The vertiports

establish a geographic network, with each node representing a vertiport. Each travel demand is

associated with a profit based on the travel distance, the number of passengers, battery consumption,

etc. The primary goal is to develop an algorithm that assigns a sequence of travel demands to each

vehicle in order to maximize the overall profits of these demands while satisfying certain constraints,

such as time window constraints and battery constraints.

Fig. 5.4 presents a simple illustrative example of a geographic network consisting of four verti-

ports. Each link in the network is assigned a weight that represents the travel time between two

vertiports. For example, the travel time from vertiport 1 to vertiport 2 is 7.07 minutes.

Assumptions for constructing the task network

When constructing the task network, the following characteristics are assumed for the tasks and

the network:
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Figure 5.4: Vertiport network example.

Definition 2. A “travel demand”, which is referred to as a task, involves transporting a specific

number of passengers from one vertiport to another. All the relevant information associated with

this task is provided in advance;

Assumption 8. Tasks are modeled as a directed graph. Each task is a node in the graph. A directed

connection is established between two tasks if a vehicle is able to sequentially accomplish them within

time windows, which requires the vehicle to fly from the destination of the preceding task to the origin

of the subsequent task and arrive before the latest starting time. This ensures that the tasks can be

efficiently executed in a specific order without violating any time constraints.

We introduce the following key concepts to define task information within the context of the

problem:

1. Time-dependent profit ri: Each task, denoted as i, is associated with a time-dependent

profit, represented as ri. This profit is a stepwise function, equaling zero outside the time

window and equaling a positive constant during the time window interval when the task
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can be performed. The profit reflects the monetary benefit the airline company gains from

successfully completing task i during its specified time window.

2. Time window [ai, bi]: Each task i is assigned a time window, denoted as [ai, bi], where ai is

the earliest starting time of task i; bi is the latest starting time by which task i must begin.

This time window provides the visiting constraints: if a vehicle arrives before ai, it has to wait

until ai; and task i cannot be completed later than bi;

3. Service time si: Each task i is associated with a service time, denoted as si. This represents

the duration required to transport passengers from the origin vertiport to the destination

vertiport for task i;

Fig. 5.5 presents an illustrative example of a task network consisting of seven tasks. The hori-

zontal axis represents the earliest starting time of each task. For instance, the earliest starting time

of task 1 is at t = 0, and the earliest starting time of task 7 is at t = 90 min. The vertical axis rep-

resents the profit associated with each task. For example, task 4 has the highest profit of p4 = 4.8.

The labels above each node indicate the origin and destination locations of the corresponding task.

For example, task 1 is to transfer passengers from vertiport 2 to vertiport 1.

The directed link between two nodes signifies that a vehicle can sequentially complete the tail

node and the head node within their respective time windows. Each link is associated with a time

cost and a corresponding battery charge cost. For example, the link between node 1 and node 4

indicates that after completing task 1, the vehicle needs to fly from vertiport 1 to vertiport 2, and

this link is referred to as a “non-profit” link; in contrast, the link between node 1 and node 6 has

zero time cost since the destination location of node 1 is the same with the origin location of task 6.

Fig. 5.5 also presents a feasible task path in this network 1 → 3 → 5 → 6 → 7. It displays

the total profits and the time cost associated with the “non-profit” links. It is obvious that path

1→ 4→ 5→ 6→ 7 yields a higher profit than 1→ 3→ 5→ 6→ 7, as node 4 is positioned higher

than node 3.

Fig. 5.6 represents a vehicle’s route corresponding to the path 1 → 4 → 5 → 6 → 7 in task

network Fig. 5.5. For a vehicle to complete this task path, the flying route for this vehicle is

vertiport 2→ 1→ 3→ 2→ 3→ 1→ 2→ 4→ 3.
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Figure 5.5: Task network example.

With this novel formulation, the task assignment problem for multiple agents is transformed into

a “max-profit paths finding problem”. The goal is to identify multiple non-intersecting paths in the

task network, aiming to maximize the total profits generated from these paths while satisfying the

time and battery charge constraints.

Remark 4. It is required that each task can only be completed by one vehicle in the task network;

if two vehicles visit the same node, only one vehicle can obtain the benefit, and the other vehicle

incurs an extra battery charge cost since each task represents a physical transportation.

5.4.2 Mixed integer programming

We now introduce a mathematical model that selects paths in the task network as an effort to

optimize the task assignment problem. Suppose a directed graph G = (V, E), where V is the set of
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Figure 5.6: Vehicle route for the feasible task path 1→ 3→ 5→ 6→ 7 in Fig. 5.5.

tasks; E is the set of links; a directed link (i, j) exists if and only if the following condition holds,

bj ≥ ai + si + τi,j , (5.25)

where τij is the traveling time associated with edge (i, j); if the destination location of task i and

the origin location of task j are the same, then τij = 0; otherwise τij = ∆td(i, j)+δt, where d(i, j) is

the distance between the destination location of task i and the origin location of task j, and ∆t is a

constant time parameter; δt accounts for the eVTOL’s takeoff and landing time, which is a constant

value.

We also introduce the following notions to formulate the mathematical optimization problem,

• tki is the time when node i is visited by vehicle k;

• θki is the SOC of the battery when vehicle k arrives node i without having started to execute

this task;

• θ̃i is the ratio of the battery charge consumed by task i to the maximum charge capacity of

the vehicle’s battery;



113

• θ̄ij is the ratio of the battery charge consumed by arc (i, j) to the maximum charge capacity

of the vehicle’s battery;

• θmin and θmax are the lower and upper bounds for the vehicle’s SOC, respectively;

• tc is the time required for the vehicle to be fully charged, which is assumed to be a constant

value for simplicity;

• xkij and yik are decision variables, where xkij = 1 indicates that the edge (i, j) is used by vehicle

k in its path; yik = 1 denotes that the task i is completed by vehicle k;

among these parameters, tki and θki are variables of the optimization problem; θ̃i, θ̄ij , θmin, θmax,

and tc are constant parameters provided in advance.

The objective function in the optimization problem is formulated as

Nv∑
k=1

Nt∑
i=1

ri(t
k
i )yik − ω

Nv∑
k=1

∑
i,j∈V

xkij θ̄ij (5.26)

where Nv is the number of vehicles; Nt is the number of tasks; ω is the weight parameter to convert

the battery charge into monetary cost. This objective function considers both task profits and

“non-profit” battery charge consumption.

Remark 5. Nv is assumed to be a very large number since we need Problem 10 to determine the

number of vehicles needed.

With these notions and the objective function, the optimization problem is defined as,
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Problem 10. Determine xkij , yik, t
k
i , θ

k
i that solves the following problem,

max
xk
ij ,yik,t

k
i ,θ

k
i

Nv∑
k=1

Nt∑
i=1

ri(t
k
i )yik − ω

Nv∑
k=1

∑
i,j∈V

xkij θ̄ij (5.27a)

s.t.
∑
i∈V

xkih =
∑
j∈V

xkhj = yhk, ∀k ∈ {1, 2, · · · , Nv}, ∀h ∈ V, (5.27b)

Nv∑
k=1

yik = 1, (5.27c)

tkj ≥ tki + si + τij −M(1− xkij), i, j ∈ V, ∀k ∈ {1, 2, · · · , Nv}, (5.27d)

θkj ≥ θki + θ̃i + θ̄ij −M(1− xkij), i, j ∈ V, ∀k ∈ {1, 2, · · · , Nv}, (5.27e)

θki ≥ θ̃i, ∀i ∈ V, ∀k ∈ {1, 2, · · · , Nv}, (5.27f)

tki = max{ai, tki }, ∀i ∈ V, ∀k ∈ {1, 2, · · · , Nv}, (5.27g)

tki ≤ bi, ∀i ∈ V, k ∈ {1, 2, · · · , Nv}, (5.27h)

−min{θki − θmin, 0}(θki − θmax) = 0 (5.27i)

−min{θki − θmin, 0}(tki − t̄c) = 0, (5.27j)

t̄c = tki + tc, (5.27k)

xkij ∈ {0, 1}, (i, j) ∈ E , (5.27l)

yik ∈ {0, 1}, i ∈ V, k ∈ {1, 2, · · · , Nv}, (5.27m)

where M is a very large constant number to facilitate the definition of time and battery charge

constraints.

Each constraint in this problem is explained in the following,

• Eq.(5.27b) ensures a conservative relation between visited links and visited nodes. If task h

is visited by vehicle k, then there are only one incoming edge and one outcoming edge of task

h are visited by vehicle k;

• Eq.(5.27c) ensures each node can be visited once and only once;

• Eq.(5.27d) introduces time constraints for vehicle k to complete task i and task j sequentially.
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When xkij = 1, the arriving time at task j should be later than the arriving time to task i plus

the service time of task i and the traveling time from i to j; In other words, the vehicle must

reach task i, complete it, and then travel to task j, ensuring that task j is visited after task i

in the itinerary if xkij = 1. When xkij = 0, there are no constraints between tki and tkj ;

• In Eq.(5.27e), when xkij = 1, vehicle k needs to satisfy the battery charge constraints in order

to complete task i and task j sequentially; when xkij = 0, there are no constraints between tki

and tkj ;

• Eq.(5.27f) requires that the SOC of vehicle k must be greater than or equal to the battery

charge consumed by task i when the vehicle arrives at node i. This ensures that the vehicle

has enough battery charge to complete task i;

• Eq.(5.27g) and Eq.(5.27h) constrain the starting time of task i within the given time window;

Eq.(5.27g) indicates that if the vehicle arrives node i before ai, it has to wait until ai to begin

the task;

• Eq.(5.27i) and Eq.(5.27j) are the state-triggered constraints. If θki ≥ θmin, then −min{θki −

θmin, 0} = 0, leading to Eq.(5.27i) and Eq.(5.27j) hold without any requirement on the sign

of terms in parentheses; in contrast, if θki ≤ θmin, then this constraint requires θki − θmax = 0

and tki − t̄c = 0, respectively, which means the SOC of vehicle k is charged to θmax and the

corresponding time for vehicle k is postponed.

Essentially, this problem is similar to TOPTW constraints except for the following differences,

1. In the original TOPTW, all agents start from the same node and end at the same node (might

be different from the starting node). In Problem 10, all vehicles need to start from different

nodes since each node can only be visited once by one vehicle, and there is no fixed ending

point for each path. We let the algorithm lead us to find the best ending node for each path;

2. In the original TOPTW, resources are usually independent (for example, time is one of the

most common resources). In Problem 10, the battery’s SOC is one of the resources, and the
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SOC is coupled with the time: when a vehicle’s SOC is lower than θmin, it has to be charged;

this action will cost time, hence affect both the SOC constraint and the time constraint.

5.4.3 Greedy algorithm and sub-modular proof

This mixed-integer programming is an NP-hard problem, indicating that finding an exact so-

lution efficiently is computationally challenging. In this subsection, the concepts of submodular

problems are introduced, the submodular property of the objective functions in Problem 10 is

proved, and a greedy algorithm to solve this problem is presented.

The following assumption is essential for the subsequent submodular property,

Assumption 9. All vehicles are identical, and each vehicle’s initial location is decided by the optimal

solution of Problem 10. The number of vehicles required for a specific task network is also obtained

from the solution of Problem 10.

We refer to nodes with zero indegree as “starting points”. Assumption 9 requires us to identify

multiple paths with different starting points in the task network. We will present how to choose the

starting points in the task network dynamically based on the structure of the task network.

Remark 6. Instead of assigning multiple tasks to each vehicle, Problem 10 essentially is to identify

multiple paths for different starting points in the task network.

Max-profit path for a single vehicle

Finding a maximum-profit path for a single vehicle is similar to the ESPPRC, which involves

finding the minimum cost elementary path (with no repeated nodes) between two specified nodes

while satisfying resource constraints [154]. The only difference is that we do not specify the ending

node for the max-profit path problem; instead, we need to determine the ending node that yields the

max-profit path. The standard approach to solve ESPPRC relies on dynamic programming, which

is to associate with each feasible partial path a label indicating the cost and the consumption of

resources while also eliminate labels with the help of dominance rules [141]. The algorithm proposed

by Feillet et al. [141] is adopted with some modifications due to the special properties of the task

network. The following notions are introduced to describe the algorithm:
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• Li is the list of labels on node vi; λi ∈ L contains the profit, the cost on resources such

as consumed time and battery charge, and the paths ending in vi (i .e., the set of nodes

[vini, · · · , vi]);

• S(vi) is the set of successors of node vi;

• E is the set of nodes waiting to be treated;

• Fij is the set of labels extended from node vi to node vj .

Algorithm 1 Maximum profit path with resource constraints
Initialize and label the starting point vini

2: for all j ∈ S(vini) do
Lj ← ϕ

4: end for
E = {vini, S(vini)}

6: while E ̸= ϕ do
vi = E(1)

8: for vj ∈ S(ni) do
Fij = ϕ

10: for λi ∈ Li do
if vj /∈ λi then

12: Fij ← Fij ∪ Extend(λi, vj)
end if

14: end for
Lj ← EFF (Fij ∪ Lj)

16: end for
E = E/ {vi}

18: end while

The procedure Extend(λi, vj) is a function that returns updated labels for vj if the transportation

from vi to vj is feasible; otherwise, it returns nothing. The procedure EFF (Fij ∪ Lj) eliminates

non-dominant labels from Lj (We refer the interested readers to [141] for a detailed explanation of

this function). The difference between Algorithm 1 and the algorithm proposed by Feillet is that,

after updating labels of vj ∈ S(vini), we do not add vj to E due to the special structure of the task

network,i .e., all tasks are time sequentially connected, and a vehicle can only traverse the network
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in one direction. This indicates that once the path travels from vi to vj , it is impossible for it to

travel back to vi due to time constraints. By eliminating the addition of nodes back to the set E

in the algorithm, we avoid unnecessary computations and effectively limit the search space. This

modification significantly reduces computational time and lays the foundation for the subsequent

greedy algorithm.

Submodular property

To explain the submodular property of Problem 10, the objective function is rewritten as

max
P ∗⊂P

f(P ∗) =

|P ∗|∑
i=1

g(pi) (5.28)

where P is the set of all feasible paths; P ∗ is a subset of P, and the cardinality of P ∗ is |P ∗|;

pi = [v1, v2, · · · , vl], v1, · · · , vl ∈ V is a feasible path in P ∗; g(pi) is the pure profit generated by

path pi. Essentially Eq.(5.28) is the same as Eq.(5.27a); in both equations, the goal is to find

multiple paths to maximize the pure profits in the task network. This objective function has the

submodular property.

Lemma 1. A function f : 2N → R is submodular if and only if for every X,Y ∈ N , f(X)+f(Y ) ≥

f(X ∩ Y ) + f(X ∪ Y ).

With this lemma, the following theory is proposed,

Theorem 1. The objective function in Problem 10 is a submodular function.

Proof. Let N = P be the set of all feasible paths in the task network, and X,Y are two subsets of N .

Denote paths in X as [px1, px2, · · · , pxn] and paths in Y as [py1, py2, · · · , pyn]. If X and Y have no

intersecting paths, then X∩Y = ϕ, f(X∩Y ) = 0, and f(X∪Y ) = f([px1, · · · , pxn, py1, · · · , pyn]) =

f([px1, · · · , pxn]) + f([py1, · · · , pyn]) = f(X) + f(Y ); hence the submodular property is satisfied.

If X and Y have intersecting paths, without losing generalizations, suppose that only px1 and py1

have one shared node vs; all other paths are non-intersecting. Let px1 = [vx1, · · · , vs, · · · , vxm] and

py1 = [vy1, · · · , vs, · · · , vym], where xm and ym are the total nodes visited in two paths, respectively.

In the task network, this indicates that two vehicles visit the same task vs, and only one can obtain
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the profit of this task; denote the incoming edges for path px1 and py1 are (xi, s) and (yi, s),

respectively (the incoming edges cannot be the same for two paths; otherwise there will be more

than one shared nodes), and the outcoming edges for paths px1 and py1 are (s, xo) and (s, yi), the

pure profit of path px1 is computed as

g(px1) = rvx1 + · · ·+ rvs + · · ·+ rvxm − ω(θ̄vx1vx2 + · · ·+ θ̄vxivs + θ̄vsvxo + · · · ), (5.29)

the pure profit of path py1 is computed as

g(py1) = rvy1 + · · ·+ rys + · · ·+ rvym − ω(θ̄vx1vx2 + · · ·+ θ̄vyivs + θ̄vsvyo + · · · ), (5.30)

then f(X) + f(Y ) = g(px1) + · · ·+ g(pxm) + g(py1) + · · ·+ g(pym).

X ∩ Y is the single node vs, the pure profit is f(X ∩ Y ) = rvs ; X ∪ Y is the set of all paths in

X and Y including the intersecting paths px1 and py1. By Remark 4, when a node is visited by two

vehicles, only one vehicle can obtain the profit, and the other vehicle needs to pay extra battery

charge cost. Hence,

f(X ∪ Y ) = g(px1) + · · ·+ g(pxm) + g(py1) + · · ·+ g(pym)− rvs − ωθ̄vs , (5.31)

where ωθ̄vs is the battery charge cost of task vs. Then, we conclude that f(X) + f(Y ) ≥ f(X ∩

Y ) + f(X ∪ Y ), where the right hand side is shorter in ωθ̄vs . This conclusion can be generalized to

multiple intersections between X and Y .

Greedy algorithm

The greedy algorithm constructs a solution by starting with an empty set and iteratively adding

new elements that improve the current solution the most. It is able to guarantee that the solution

is at least 1
1+κ of the optimal solution for submodular functions, where κ is the curvature of the

submodular function. The curvature of Eq.(5.28) depends on the battery charge consumption of

each task and varies with the task network. We have demonstrated that the objective function for

our task assignment problem is submodular. Now, we propose the greedy algorithm. Let m be

the number of starting points. Algorithm 2 starts with these m nodes and dynamically adds more
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“starting nodes” as needed.

Algorithm 2 Greedy algorithm for multiple paths
Initialize m starting nodes

2: F = V, Nw = m
while F ̸= ϕ or Nw = Nv do

4: Run Algorithm 1 for each starting nodes, obtain m paths
Finalize non-intersecting paths, remove nodes in these paths from F ,

6: For paths that share nodes with other paths, finalize the path with the highest profit, remove
nodes in this path from F

Rebuild the task network after removing all nodes of finalized paths
8: Identify new starting nodes, Nw = [Nw, Nf ]

end while

5.4.4 Numerical results

We use a simple geographic network and a randomly generated task set to show information of

UAM obtained from the solution of Problem 10.

Suppose we have a geographic network shown in Fig. 5.7.

Figure 5.7: Geographic network with 8
vertiport

Vehicle index Sequence of tasks
1 [2, 9, 13, 19, 25, 36]

2 [3, 14, 22, 26, 40]

3 [5, 18, 27, 31, 44, 49]

4 [4, 10, 20, 28, 33, 50]

5 [6, 12, 23, 39, 45]

6 [1, 7, 17, 24, 46]

7 [8, 21, 32, 38, 43]

8 [15, 30, 34, 41, 47]

9 [11, 16, 29, 35, 48]

10 [37, 42]

Table 5.2: Path assignment results.

The following task set has been considered: The total number of tasks is 50; the starting time

range for tasks is [0, 3hr]. The origin and destination locations are randomly generated.

The numerical results obtained from the greedy algorithm are shown in Fig. 5.8. Starting nodes

are colored as pink, and ending nodes are colored as black.
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Figure 5.8: Paths obtained from greedy algorithm.

From Fig. 5.8, it is evident that the task network becomes significantly complex, even for a

relatively small number of tasks. Numerical results indicate that completing every task in this

network requires the deployment of 10 vehicles. The resulting paths for each vehicle are presented

in Table.5.2. Notably, nine out of the ten vehicles are assigned at least five tasks, while the last

vehicle is assigned only two tasks. The computation time for this analysis is 0.54 seconds.

To further explore the system’s performance, 100 sets of tasks with a similar pattern are randomly

generated (the total number of tasks is 50; the starting time range for tasks is [0, 3 hr]). The average

number of vehicles required to complete these tasks is found to be 11.29, with a median of 11 and

a maximum of 14. Given the geographical layout of a conceptual city as depicted in Fig. 5.7, and

considering the same travel demand pattern as above, deploying 11 eVTOLs as regular vehicles,
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along with three eVTOLs as backup, seems reasonable. The average computational time for this

scenario is 0.23 seconds. The proposed algorithm is able to determine the number of vehicles required

to meet the daily air travel demands in a city.
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Chapter 6

CONCLUSIONS

This chapter underscores the threefold contributions of this dissertation while also outlining

potential future research directions.

First, a comprehensive study of trajectory optimization algorithms for All-Electric Aircraft

(AEA) is conducted. Various optimal control problems, integrating flight dynamics and battery

dynamics, are formulated and analyzed using the minimum principle. The numerical results indi-

cate that different battery models affect the overall direct operating cost of the flight. However,

the optimal control input profiles slightly vary for distinct battery models. This observation pro-

vides valuable insights for the design of optimal control strategies for AEA. One practical approach

involves obtaining offline optimal control profiles using simplified battery dynamics and then im-

plementing these profiles in real time using online estimation algorithms to monitor the battery

pack states. A Simulink model with configurable battery blocks is developed to verify the proposed

algorithms and observe the battery dynamics, enabling a more accurate estimation of the operating

cost of the flight.

For future research in this direction, several promising topics are worth exploring. Firstly, the

optimal control profiles obtained in this dissertation for AEA are open-loop control solutions. A

potential avenue for future investigation is developing closed-loop online algorithms that incorporate

battery state of charge (SOC) estimation. This would enhance the real-time adaptability of the

optimal control strategies to changing flight conditions and battery performance. Another intriguing

area of exploration involves studying the thermal behavior estimation and thermal management of

the battery pack during flight conditions. We have tried to solve an optimal control problem

with the integration of flight dynamics and the single particle model; however, the problem is too

complicated to be solved using commercial solvers. A feasible solution to tackle this challenge is

to apply a model predictive control strategy. This approach would involve solving a simplified

optimal control problem in a short horizon and implementing only the first step of the optimal
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solution. Subsequently, the real-time flight states and battery states information would be used as

feedback to iteratively solve the optimal control problem during flight, allowing for an adaptive and

efficient battery thermal management system. These future directions hold significant promise and

can contribute to advancing the field of All-Electric Aircraft trajectory optimization and battery

management in the context of Urban Air Mobility.

Second, for Hybrid-Electric Aircraft (HEA), a power allocation algorithm is developed to op-

timize the distribution of power demand in the propulsion system for fuel savings. An optimal

control problem is formulated and applied to a single-seat aircraft, and the minimum principle is

utilized to analyze the necessary optimality conditions. The numerical results demonstrate that

charging the battery pack using the engine during flight yields only a negligible amount of fuel

savings. This observation leads to an investigation to understand the reasons behind this limited

fuel-saving effect. The algorithm is then applied to a conceptual 19-seat aircraft, confirming that the

fuel-saving achieved by charging the battery during flight remains minimal. Consequently, research

is conducted on different hybrid electric configurations. Two parallel hybrid electric configurations

(the connected configuration allows the engine to charge the battery during flight while the inde-

pendent configuration does not have a mechanical connection between the engine and the electric

path) are compared in the context of fuel minimization. The original optimal control problem is

transformed into a finite-dimension optimization problem in order to conduct sensitivity analysis.

The numerical results in the 19-seat aircraft indicate that compared to charging the battery during

flight, increasing battery capacity onboard is more fuel-efficient. A Simulink model is developed to

verify the proposed algorithms.

Regarding future research on energy management for HEA, the integration of battery dynamics

is a worthwhile direction. The power allocation problem in this dissertation only considers fuel

consumption and fuel rate maps while assuming that the output voltage of the battery pack remains

constant. Integrating battery dynamics into the analysis will provide a more comprehensive overview

of the energy management problem for HEA, leading to more accurate and realistic results. Another

important direction is to consider battery degradation when comparing different hybrid electric

configurations. Battery degradation over time can significantly impact the overall performance and

efficiency of the aircraft’s power system. Including battery degradation in the analysis will provide

more practical insights into the long-term implications of different hybrid electric configurations.
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Furthermore, an interesting research topic involves incorporating real-time SOC estimation of the

battery into the fuel minimization problem. Real-time SOC estimation would enable the power

allocation algorithm to adapt to changing battery conditions during flight, leading to more effective

and dynamic power distribution, which can further enhance fuel efficiency for HEA.

In the final part of this dissertation, two network-level topics related to Urban Air Mobility

(UAM) are explored. The first topic addresses the vertiport selection problem, where a mixed-

integer linear program is introduced and applied to the city of Anaheim, California. Unlike conven-

tional traffic networks, the hybrid ground-air network incorporates node capacity for static traffic

equilibria. This approach enables the assessment of vertiport locations and capacities in the context

of UAM, considering both ground and air transportation aspects. The second topic focuses on the

assignment of travel demands to vehicles in the UAM system, referred to as the task assignment

problem. This problem is transformed into the identification of multiple paths that maximize the

overall profit. To demonstrate the effectiveness of the proposed algorithm, a conceptual geographic

network is used, and a set of randomly generated tasks is employed as a test case. Through this

demonstration, fundamental questions related to UAM, such as the required number of vehicles for

a city, are addressed, providing valuable insights into the efficient operation of UAM systems.

In the context of implementing the task assignment algorithm, the current assumption of a lin-

ear relationship between battery charge consumption and traveling distance simplifies the analysis.

However, a promising future direction involves investigating and understanding the precise relation-

ship between battery charge consumption and flight conditions. This investigation would lead to

a more accurate and realistic representation of battery usage in UAM operations, enabling better

optimization of task assignments and resource management. Another crucial topic worth exploring

is the impact of different charging patterns on the overall performance of UAM systems. Evaluating

the trade-offs between charging patterns, including factors like charging time, battery lifespan, and

operational efficiency, can provide insights into the most effective and sustainable strategies for man-

aging battery resources in UAM. Additionally, it is essential to address variations and uncertainties

in the task assignment problem. In real-world scenarios, UAM operations may face unpredictable

factors, such as changing weather conditions, traffic congestion, or sudden changes in travel de-

mand. Incorporating uncertainty into the task assignment algorithm can enhance the robustness

and adaptability of the UAM system. This could involve using probabilistic models, scenario-based
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optimization, or other uncertainty quantification techniques to develop more resilient and flexible

task assignment strategies.
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Appendix A

HEA OPTIMIZATION PROBLEM TRANSFORMATION

This chapter provides a detailed presentation of the analytical steps implemented in Section 4.3.

A.1 Transformation to a finite-dimensional optimization problem

In Problem 6, the explicit functions of the optimal control on each arc are as follows:

1. On t̂ ∈ [0, t̂1], the optimal control is τ∗ = τmax = 1. Hence, the dynamics of states can be

written as,

˙̂m = k11 + k10, (A.1a)

˙̂q = k21 + k20 + k22m̂
2 + k23m̂, (A.1b)

resulting in the explicit expressions for states as a function of time,

m̂(t̂) = m0 + (k11 + k10)t̂, (A.2a)

q̂(t̂) = h13t̂
3 + h12t̂

2 + h11t̂+ h10, (A.2b)

where, h13 = 1
3k22(k11+k10)

2, h12 = (k22m0+
1
2k23)(k11+k10), h11 = k21+k20+k22m

2
0+k23m0,

and h10 = q̂0 is computed from q̂(t̂ = 0) = q̂0.

2. On t̂ ∈ [t̂1, t̂2], q̂(t̂) = 0 holds for all t̂, and the optimal control is τb = − 1
k21

(k20+k22m̂
2+k23m̂).

Hence, the dynamics of the aircraft mass can be written as,

˙̂m = −k11
k21

(k20 + k22m̂
2 + k23m̂) + k10. (A.3)

The initial condition for this interval is m̂(t̂1) = m0 + (k11 + k10)t̂1. Thereby, by separation
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of variables, we obtain the explicit function of the aircraft’s mass on the boundary arc as,

m̂(t̂) =
1

2k32
[r0 tan(−

r0(t̂− t̂1)
2

+ C0)− k31], (A.4)

where k30 = k11k20
k21

− k10, k31 = k11k23
k21

, k32 = k11k22
k21

, and

C0 =
−2 arctan(2k32m(t̂1)+k31

r0
)

r0
, r0 =

√
4k32k30 − k231.

We denote m̂(t̂2) as z, which is the third constraint in Problem 7.

3. On t̂ ∈ [t̂2, 1], the optimal control is τ∗ = τmin = 0; thus, the dynamics of states can be written

as

˙̂m = k10, (A.5a)

˙̂q = k20 + k22m̂
2 + k23m̂, (A.5b)

where the initial states on this arc are [z, 1]⊤; the explicit functions of the states are,

m̂(t̂) = m̂(t̂2) + k10(t̂− t̂2), (A.6a)

q̂(t̂) = g13(t̂− t̂2)3 + g12z(t̂− t̂2)2 + g11(t̂− t̂2)2

+ k20(t̂− t̂2) + k22z
2(t̂− t̂2) + k23z(t̂− t̂2) + 1, (A.6b)

where g13 = 1
3k22k

2
10, g12 = k22k10, and g11 = 1

2k23k10.

The first constraint for Problem 7 is when q hits the boundary at the junction time t̂ = t̂1, given

as

Φ1 := q̂(t̂1) = 1. (A.7)

When we substitute this constraint into Eq. (A.2b), we obtain,

h13ξ
3
1 + h12ξ

2
1 + h11ξ1 + h10 = 1. (A.8)
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The second constraint for the optimization problem is the terminal condition for q̂, i .e., q̂(1) = q̂f ;

after substituting this constraint into Eq. (A.6b), we obtain

g13ξ
3
3 + g12zξ

2
3 + g11ξ

2
3 + k20ξ3 + k22z

2ξ3 + k23zξ3 + 1− q̂f = 0. (A.9)

A.2 Verification of the second-order sufficient condition and sensitivity analysis

We refer to Theorem 3.1 in [155] pertaining to the second-order sufficient condition for Problem

7. Let x be a feasible solution of Problem 7. Suppose the following conditions hold:

1. Lx = 0 (first order necessary condition).

2. rank[Φx] = r, where r is the number of constraints.

3. v⊤Lxxv > 0,∀v ∈ Rn, v ̸= 0.Φxv = 0, where n is the number of variables in Problem 6.

Then x is a strict minimizer of Problem 7.

Let ∆ = 1 + tan( r02 ξ2)(f1x10 + f2ξ1 + f3) and f4 = f1x10 + f2ξ1 + f3.

The expression for Lx are now computed as,

Lξ1 = ρ1(3h13ξ
2
1 + 2h12ξ1 + h11) + ρ4 +

−ρ3f2
f1

(1 + tan2( r02 ξ2))

∆2
, (A.10a)

Lξ2 =
ρ3r0
2f1

(1 + f24 ) sec
2( r02 ξ2)

∆2
+ ρ4, (A.10b)

Lξ3 = −k10 + ρ4 + ρ2(3g13ξ
2
3 + 2g12zξ3 + 2g11ξ3 + k20 + k22z

2 + k23z), (A.10c)

Lz = −1 + ρ3 + ρ2(g12ξ
2
3 + 2k22ξ3z + k23ξ3). (A.10d)

The matrix Lxx is now represented as,

Lxx =



∂Lξ1
∂ξ1

∂Lξ1
∂ξ2

∂Lξ1
∂ξ3

∂Lξ1
∂z

∂Lξ2
∂ξ1

∂Lξ2
∂ξ2

∂Lξ2
∂ξ3

∂Lξ2
∂z

∂Lξ3
∂ξ1

∂Lξ3
∂ξ2

∂Lξ3
∂ξ3

∂Lξ3
∂z

∂Lz
∂ξ1

∂Lz
∂ξ2

∂Lz
∂ξ3

∂Lz
∂z

 =


L11 L12 0 0

L21 L22 0 0

0 0 L33 L34

0 0 L43 L44

 , (A.11)
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where

L11 = ρ1(6h13ξ1 + 2h12) +
2ρ3f

2
2

f1

(tan( r02 ξ2) + tan3( r02 ξ2))

∆3
, (A.12a)

L12 =
−ρ3r0f2

f1

sec2( r02 ξ2)(tan(
r0
2 ξ2)− f4)

∆3
, (A.12b)

L21 = L12, (A.12c)

L22 =
ρ3r

2
0(1 + f24 ) sec

2( r02 ξ2)

2f1

(tan( r02 ξ2)(f4 tan(
r0
2 ξ2) + 1)− f4 sec2( r02 ξ2))
∆3

. (A.12d)

Lastly, the function Φx is computed as,

∂Φ1

∂ξ1
= 3h13ξ

2
1 + 2h12ξ1 + h11,

∂Φ1

∂ξ2
= 0,

∂Φ1

∂ξ3
= 0,

∂Φ1

∂z
= 0; (A.13a)

∂Φ2

∂ξ1
= 0,

∂Φ2

∂ξ2
= 0,

∂Φ2

∂ξ3
= 3g13ξ

2
3 + 2g12zξ3 + 2g11ξ3 + k20 + k22z

2 + k23z,

∂Φ2

∂z
= g12ξ

2
3 + 2k22ξ3z + k23ξ3; (A.13b)

∂Φ3

∂ξ1
=
−f2(1 + tan2( r02 ξ2))

f1∆2
,
∂Φ3

∂ξ2
=
r0 sec

2( r02 ξ2)(1 + f24 )

2f1∆2
,

∂Φ3

∂ξ3
= 0,

∂Φ3

∂z
= 1; (A.13c)

∂Φ4

∂ξ1
= 1,

∂Φ4

∂ξ2
= 1,

∂Φ4

∂ξ3
= 1,

∂Φ4

∂z
= 0. (A.13d)

With Lx, Lxx, and Φx, one can easily verify the second order sufficient condition, and conduct

sensitivity analyses.
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Appendix B

VERTIPORT SELECTION PROOF

B.1 Proof of Proposition 1

We start by deriving the dual of the linear program 5.8. Let the Lagrangian be defined as

L(X,U, V, p, q) = c⊤X1d − tr(V ⊤EX) + tr(V ⊤S)

− tr(U⊤X) + p⊤(X1d − f) + q⊤(DX1d − g).
(B.1)

The dual of the linear program is given by

maximize
U,V,p,q

ψ(U, V, p, q)

subject to U ≥ 0, p ≥ 0, q ≥ 0.

(B.2)

where ψ(U, V, p, q) = minX L(X,U, V, p, q). Since matrix trace is invariant under cyclic permutation,

we have

c⊤X1d = tr(1dc
⊤X), p⊤X1d = tr(1dp

⊤X), q⊤DX1d = tr(1dq
⊤DX).

Substitute the above equalities into Eq.(B.1), we can show the following

∂

∂X
L(X,U, V, p, q) =

∂

∂X
tr((1d(c

⊤ + p⊤ + q⊤D)− V ⊤E − U⊤)X)

= (c+ p+D⊤q)1d − E⊤V − U.

Since L(X,U, V, p, q) is a linear function of X, we have ψ(U, V, p, q) = L(X,U, V, p, q) if and only if
∂
∂XL(X,U, V, p, q) = 0. Therefore, we can rewrite optimization Eq.(B.2) equivalently as follows

maximize
U,V,p,q

tr(V ⊤S)− f⊤p− g⊤q

subject to (c+ p+D⊤q)1⊤d = E⊤V + U,

U ≥ 0, p ≥ 0, q ≥ 0.

(B.3)
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Using [121, Thm. 1.3.3], we conclude that X and U, V, p, q are optimal for linear program 5.8

and Eq.(B.3), respectively, if and only if the primal and dual feasibility condition in Eq.(5.9) and

the complementary slackness condition Eq.(5.10) are satisfied. Furthermore, the complementary

slackness conditions in Eq.(5.10) are equivalent to the zero duality gap condition in Eq.(5.11).

B.2 Proof of Corollary 1

Since u⋆, u ∈ P(i, s(j)), by pre-multiplying equation Eq.(5.9) with u⋆ and u and we can show

the following:

(u⋆)⊤c = Vij − Vs(j),j +
∑nl

k=1[u
⋆]j [U ]kj , (B.4a)

u⊤c = Vij − Vs(j),j +
∑nl

k=1[u]j [U ]kj . (B.4b)

In addition, the constraints in Eq.(5.9c) and Eq.(5.10) together implies that [U ]kj = 0 for all k

such that [X]kj > 0. Combining this fact with the assumption that [X]kj > 0 for all k such that

[u⋆]k = 1, we conclude that [U ]kj = 0 for all k such that [u⋆]k = 1. Hence

(u⋆)⊤c = Vij − Vs(j),j +
∑nl

k=1[u
⋆]j [U ]kj = Vij − Vs(j),j . (B.5)

By combining Eq.(B.4) and Eq.(B.5), we obtain the following

(u⋆)⊤c = Vij − Vs(j),j = u⊤c−
∑nl

k=1[u]j [U ]kj ≤ u⊤c,

where the last step is because u and U are both elementwise nonnegative.

B.3 Proof of Proposition 2

First, suppose δ, q, B, and g satisfy the constraints in Eq.(5.21). Let [Y ]ij = [g]i[q]i[B]ij for all

i = 1, 2, . . . , nv and j = 1, 2, . . . , nm, and µ = maxi,j [q]i[G]ij . Then one can verify that δ, q, B, and

Y satisfy the constraints in Eq.(5.22).

Second, suppose δ, q, B and Y satisfy the constraints in Eq.(5.22) for some sufficiently large

µ ∈ R++. The constraints B ∈ {0, 1}nv×nm and B1nm ≤ 1nv implies that each row of matrix B

can have at most one entry equals one. Hence, we can obtain a unique vector g by defining its i-th
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entry as follows:

[g]i =


[G]ij , if [B]ij = 1,

0, if [B]ij = 0 for all j = 1, 2, . . . , nm.
(B.6)

Next, since µ ∈ R++ is sufficiently large, an upper bound of µ can be treated as redundant. As a

result, if [B]ij = 0, then the constraints in Eq.(5.22) implies that [Y ]ij = 0 and [G]ij [q]i ≥ 0. Since

q ≥ 0 and G ≥ 0, the latter constraint is redundant. Furthermore, if [B]ij = 1, then the constraints

in Eq.(5.22) implies that

0 ≤ [Y ]ij , [G]ij [q]i = [Y ]ij .

By combining the above two cases with the definition in Eq.(B.6), we conclude that
∑nv

i=1

∑nm
j=1[Y ]ij =∑nv

i=1[g]i[q]i for all i = 1, 2, . . . , nv and j = 1, 2, . . . , nm. Therefore, δ, q, B and g satisfy the con-

straints in Eq.(5.21).
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