
 













where ½xcg ycg zcg" and ½xref yref zref " are the coordinates of the aircraft c.g. and the
reference point, respectively. If this conversion is done before the modeling
begins, then the estimated aerodynamic model parameters will be associated
with the reference point, rather than with the aircraft c.g., which can simplify
comparisons with wind-tunnel data.

Finally, the angular accelerations _p, _q, and _r are usually not measured directly.
Instead, they are obtained by a smoothed numerical differentiation of the angular
rates. Effective algorithms for obtaining accurate smoothed derivatives of
measured data are presented in Chapter 11.

When applying linear regression using flight-test data, the regressors are
assembled from measured data, which are noisy. This violates the assumption
made in the linear regression analysis that the regressors are deterministic. The
result is that the estimated parameters are biased and inefficient, as discussed
in Refs. 2 and 3. The extent to which this occurs increases with increasing
noise levels on the measurements used to assemble the regressors.

Linear regression can also be applied to the linearized state-space aircraft
equations of motion, such as Eqs. (3.126a), (3.126b), and (3.130a–3.130c). In
this case, the state derivative terms on the left sides of the equations are con-
sidered the dependent variable, and the perturbation states and controls are the
regressors. The estimated parameters are the dimensional stability and control
derivatives. A similar approach can be used with the linearized output equations
(3.126c) and (3.130f).

This technique can also be used with transfer function models and measured
data transformed into the frequency domain (see Chapter 7). In both the state-
space and transfer function models, the dimensional model parameters
combine the nondimensional aerodynamic stability and control derivatives
with dynamic pressure, aircraft reference geometry, and mass/inertia properties
[cf. Eqs. (3.127) and (3.131)]. Consequently, the dimensional parameters can
vary throughout the maneuver as the dynamic pressure and mass/inertia proper-
ties change. This introduces some inaccuracy in the estimates of these par-
ameters, because the parameter estimation algorithms assume that the model
parameters are constants throughout the maneuver. The problem is avoided by
using nondimensional aerodynamic coefficients as the dependent variable, as
described earlier.

Example 5.1

In this example, linear regression is applied to aircraft flight-test data to esti-
mate nondimensional stability and control derivatives. The test aircraft was the
NASA Twin Otter aircraft, which is a twin-engine turboprop commuter aircraft,
shown in Fig. 5.3.

Flight-test data were collected for two lateral maneuvers initiated from the
same steady trim condition, using rudder and aileron deflections. The flight
control system was unaugmented, so the pilot commands were directly
implemented at the control surfaces through the control linkage. Measured
flight data from run 1 were intended for aerodynamic parameter estimation;
data from run 2 were for model validation. The basic aircraft characteristics
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and flight condition are specified as follows:

!c ¼ 6:5 ft Ix ¼ 20,900 slug-ft2 Vo ¼ 238 ft=s

b ¼ 65 ft Iy ¼ 24,261 slug-ft2 !qo ¼ 56:6 psf

S ¼ 422:5 ft2 Iz ¼ 38,469 slug-ft2 g ¼ 32:17 ft=s2

m ¼ 340 slugs Ixz ¼ 1,128 slug-ft2

The input and output variables were sampled at intervals of 0.02 s, corre-
sponding to a 50-Hz sampling rate. Figure 5.4 shows measured data for run 1,
which is a lateral maneuver implemented by a series of rudder pulses, followed
by an aileron doublet.

The regression equations for lateral aerodynamic force and moment coeffi-
cients were

CY (i) ¼ CYo þ CYb
b(i)þ CYr

b

2Vo
r(i)þ CYdr

dr(i)þ nY (i) (5:102a)

Cl(i) ¼ Clo þ Clb
b(i)þ Clp

b

2Vo
p(i)þ Clr

b

2Vo
r(i)

þ Clda
da(i)þ Cldr

dr(i)þ nl(i) (5:102b)

Fig. 5.3 NASA Twin Otter aircraft.
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Cn(i) ¼ Cno þ Cnb
b(i)þ Cnp

b

2Vo
p(i)þ Cnr

b

2Vo
r(i)

þ Cnda
da(i)þ Cndr

dr(i)þ nn(i) (5:102c)

for i ¼ 1, 2, . . . , N. The error terms are assumed to be zero mean with constant
variance, i.e., E½nY (i)" ¼ 0 and Var[nY (i)] ¼ E[nY

2 (i)] ¼ sY
2, etc. The dependent

variable values on the left sides of the preceding equations were computed from
Eqs. (5.99b), (5.100a), and (5.100c), respectively. The angular accelerations _p
and _r in Eqs. (5.100a) and (5.100c) were obtained by smoothed local numerical
differentiation of the measured angular velocities p and r, as described in
Chapter 11.

The least-squares estimate of the aerodynamic parameters in the preceding
equations is given by Eq. (5.10),

û ¼ (XT X)%1XT z

For the yawing moment coefficient Cn,

u ¼ ½Cno Cnb
Cnp Cnr Cnda

Cndr
"T

z ¼ ½Cn(1) Cn(2) & & & Cn(N)"T

Fig. 5.4 Measured input and output variables for lateral maneuver, run 1.
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and similarly for CY and Cl.
The results for the yawing moment coefficient are summarized in Table 5.1,

including parameter estimates, standard errors, t statistics, fit error, and coeffi-
cient of determination. The parameter estimates were computed from Eq.
(5.10). Standard errors for the parameter estimates come from the square root
of the diagonal elements of the covariance matrix computed using Eq. (5.12),
with the fit error estimated by Eq. (5.24). The t statistic for the addition of
each single model term is computed from Eq. (5.60). The coefficient of determi-
nation comes from Eq. (5.31), with Eq. (5.26). Pair-wise correlations for the esti-
mated parameters are obtained from Eq. (5.18), and shown in Table 5.2. Results
for CY and Cl can be computed in the same way.

In Table 5.1, note that the jt0j values are very high for all parameters except
Cnda

. The estimate of Cnda
is also close to zero. This parameter quantifies the

effect of aileron on the yawing moment. Airplanes are designed so that the ailer-
ons affect primarily rolling moment, and produce as little yawing moment as
possible. Because of this, Cnda

is normally a weak parameter, i.e., a parameter

with relatively small magnitude. Based on this information, it might be that the
Cnda

da term is not necessary in the model. Section 5.4 gives more detail on

methods that can be used to address this issue of model structure determination,
using statistical metrics based on the measured data.

Table 5.1 Least-squares parameter estimation results, aerodynamic yawing
moment coefficient, run 1

Parameter û s(û ) jt0j 100½s(û )=j û j"

Cnb
8.54 ' 1022 3.58 ' 1024 238.9 0.4

Cnp 25.15 ' 1022 1.43 ' 1023 35.9 2.8
Cnr 21.98 ' 1021 1.30 ' 1023 151.8 0.7
Cnda

2.34 ' 1023 5.00 ' 1024 4.7 21.4
Cndr

21.31 ' 1021 5.97 ' 1024 218.5 0.5
Cno 24.60 ' 1024 7.42 ' 1026 62.0 1.6
s ¼ ŝ 2.25 ' 1024 —— —— ——
R2, % 99.6 —— —— ——
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