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where [Xcg Yeg Zeo] and [Xrer Yref Zrer] are the coordinates of the aircraft c.g. and the
reference point, respectively. If this conversion is done before the modeling
begins, then the estimated aerodynamic model parameters will be associated
with the reference point, rather than with the aircraft c.g., which can simplify
comparisons with wind-tunnel data.

Finally, the angular accelerations p, ¢, and r are usually not measured directly.
Instead, they are obtained by a smoothed numerical differentiation of the angular
rates. Effective algorithms for obtaining accurate smoothed derivatives of
measured data are presented in Chapter 11.

When applying linear regression using flight-test data, the regressors are
assembled from measured data, which are noisy. This violates the assumption
made in the linear regression analysis that the regressors are deterministic. The
result is that the estimated parameters are biased and inefficient, as discussed
in Refs. 2 and 3. The extent to which this occurs increases with increasing
noise levels on the measurements used to assemble the regressors.

Linear regression can also be applied to the linearized state-space aircraft
equations of motion, such as Egs. (3.126a), (3.126b), and (3.130a—3.130c). In
this case, the state derivative terms on the left sides of the equations are con-
sidered the dependent variable, and the perturbation states and controls are the
regressors. The estimated parameters are the dimensional stability and control
derivatives. A similar approach can be used with the linearized output equations
(3.126¢) and (3.130f).

This technique can also be used with transfer function models and measured
data transformed into the frequency domain (see Chapter 7). In both the state-
space and transfer function models, the dimensional model parameters
combine the nondimensional aerodynamic stability and control derivatives
with dynamic pressure, aircraft reference geometry, and mass/inertia properties
[cf. Egs. (3.127) and (3.131)]. Consequently, the dimensional parameters can
vary throughout the maneuver as the dynamic pressure and mass/inertia proper-
ties change. This introduces some inaccuracy in the estimates of these par-
ameters, because the parameter estimation algorithms assume that the model
parameters are constants throughout the maneuver. The problem is avoided by
using nondimensional aerodynamic coefficients as the dependent variable, as
described earlier.

Example 5.1

In this example, linear regression is applied to aircraft flight-test data to esti-
mate nondimensional stability and control derivatives. The test aircraft was the
NASA Twin Otter aircraft, which is a twin-engine turboprop commuter aircraft,
shown in Fig. 5.3.

Flight-test data were collected for two lateral maneuvers initiated from the
same steady trim condition, using rudder and aileron deflections. The flight
control system was unaugmented, so the pilot commands were directly
implemented at the control surfaces through the control linkage. Measured
flight data from run 1 were intended for aerodynamic parameter estimation;
data from run 2 were for model validation. The basic aircraft characteristics
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Fig. 5.3 NASA Twin Otter aircraft.

and flight condition are specified as follows:

c=6.5ft I, = 20,900 slug-ft>  V, =238 ft/s

b =65 ft I, = 24,261 slug-ft* g, = 56.6 psf

S =422.5 ft I, = 38,469 slug-ft? g =32.17ft/s?
m =340 slugs I, = 1,128 slug-ft®

The input and output variables were sampled at intervals of 0.02 s, corre-
sponding to a 50-Hz sampling rate. Figure 5.4 shows measured data for run 1,
which is a lateral maneuver implemented by a series of rudder pulses, followed
by an aileron doublet.

The regression equations for lateral aerodynamic force and moment coeffi-
cients were

b
Cyi) = Cy, + CrgB) + Cr, 30 r() + Cry 8,() + (@) (5.1020)
C(i)=C Ci.BG) + C —b )+ C b i
D) = Ciy - CigB) + Ciy 50-p() + Cp 51D

+ Clsa 0,(i) + Cis, or(1) + vi(@) (5.102b)
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Fig. 5.4 Measured input and output variables for lateral maneuver, run 1.

) , b . b .
Cu(D) = Gy + CugBQ) + C, Z—VOP(l) + Cy, 2—Vor(l)
+ Gy 0,(1) + Chg o,(1) + v, (i) (5.102¢)
fori=1,2,...,N. The error terms are assumed to be zero mean with constant

variance, i.e., E[vy(i)] = 0 and Var[vy (i)] = E[vy (i)] = 0%, etc. The dependent
variable values on the left sides of the preceding equations were computed from
Egs. (5.99b), (5.100a), and (5.100c), respectively. The angular accelerations p
and 7 in Egs. (5.100a) and (5.100c) were obtained by smoothed local numerical
differentiation of the measured angular velocities p and r, as described in
Chapter 11.

The least-squares estimate of the aerodynamic parameters in the preceding
equations is given by Eq. (5.10),

0=X"xX)"'X"¢
For the yawing moment coefficient C,,

— T
0_ [Cno CI’lB Cnp Cnr Ci’l8a Cn5r]

2=[Cu(1) C,2) --- Cu(N)”
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Table 5.1 Least-squares parameter estimation results, aerodynamic yawing
moment coefficient, run 1

Parameter 0 s(0) Ito] 100[s(0)/1 6]
Cg 8.54 x 1072 358 x 107* 238.9 0.4
Cnp —5.15 x 1072 143 x 1077 35.9 2.8
Cy, —1.98 x 107! 1.30 x 1072 151.8 0.7
Cos, 234 x 1077 500 x 107* 4.7 21.4
Cos, 131 x 107" 597 x 10™* 218.5 0.5
Crp —4.60 x 10°* 7.42 x 107° 62.0 1.6
s=0 2.25 x 107* — — —
R, % 99.6 — — —
_ b b -
1 1 1 D 8(1) 801
B() 2Vop( ) v r(1) (1) (1)
b b
1 1 2 2) 8.2 8.2
Y B) 2Vop( ) 2V r2) (2) (2)
o p b
1 BN N N) 8,N) &N
i B(N) 2Vop( ) 2V0r( ) 04(N) o )_

and similarly for Cy and C;.

The results for the yawing moment coefficient are summarized in Table 5.1,
including parameter estimates, standard errors, ¢ statistics, fit error, and coeffi-
cient of determination. The parameter estimates were computed from Eq.
(5.10). Standard errors for the parameter estimates come from the square root
of the diagonal elements of the covariance matrix computed using Eq. (5.12),
with the fit error estimated by Eq. (5.24). The r statistic for the addition of
each single model term is computed from Eq. (5.60). The coefficient of determi-
nation comes from Eq. (5.31), with Eq. (5.26). Pair-wise correlations for the esti-
mated parameters are obtained from Eq. (5.18), and shown in Table 5.2. Results
for Cy and C; can be computed in the same way.

In Table 5.1, note that the |#y| values are very high for all parameters except
Cnaa' The estimate of Cnaa is also close to zero. This parameter quantifies the

effect of aileron on the yawing moment. Airplanes are designed so that the ailer-
ons affect primarily rolling moment, and produce as little yawing moment as
possible. Because of this, Cnau is normally a weak parameter, i.e., a parameter
with relatively small magnitude. Based on this information, it might be that the
Cnaa 0, term is not necessary in the model. Section 5.4 gives more detail on

methods that can be used to address this issue of model structure determination,
using statistical metrics based on the measured data.
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